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Nuclear Medicine Investigations in Dementia 
and Parkinsonism

Nuklearnomedicinske preiskave pri diagnosticiranju 
demence in parkinsonizmov

Tomaž Rus,1 Jan Jamšek,2 Rok Berlot,1 Katarina Šurlan Popovič,3 Marko Grmek,2 Maja 
Trošt1,2,4

Abstract
The incidence of neurodegenerative brain disorders, manifested as dementia or parkinsonism, 
is increasing with population aging. Early and correct diagnosis is essential for excluding po-
tentially curable causes, optimizing symptomatic treatment, social care and selecting patients 
for clinical trials. Final diagnosis of most neurodegenerative brain diseases can only be made 
by histopathological examination of the brain tissue. However, functional nuclear-medicine in-
vestigations contribute greatly to the diagnosis in vivo. Changes in regional brain metabolism, 
neurotransmitter system dysfunction and misfolded protein deposition can be observed. Based 
on specific changes in regional brain metabolism measured with 18F-FDG PET, we can distinguish 
between Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and be-
tween Parkinson’s disease and other neurodegenerative parkinsonisms. Dopaminergic system 
imaging (e.g. dopamine transporter scintigraphy, DaTSCAN) enables us to discriminate neuro-
degenerative parkinsonism from alternative causes. Excessive deposition of amyloid-β, a patho-
logical hallmark of Alzheimer’s disease, can be identified by amyloid PET already in preclinical 
subjects. Nuclear medicine imaging methods, indications, characteristic findings and limitations 
of these investigations in neurodegenerative brain disorders are presented in this article.

Izvleček
Nevrodegenerativne bolezni možganov, ki se klinično izrazijo kot demenca ali parkinsonizem, 
postajajo s staranjem prebivalstva vse pogostejše. Zgodnja in pravilna postavitev diagnoze je 
pomembna zaradi izključevanja ozdravljivih vzrokov, ustreznega simptomatskega zdravljenja, so-
cialnih ukrepov in vključevanja bolnikov v klinične raziskave. Povsem dokončno diagnozo večine 
nevrodegenerativnih bolezni možganov lahko postavimo le na podlagi patohistološkega vzorca 
možganovine. Za živa pa so nam v veliko pomoč funkcijske nuklearnomedicinske preiskave, s 
katerimi lahko prikažemo spremenjeno področno presnovo možganov, motnje na ravni nevro-
transmitrskih sistemov in patomorfološki substrat bolezni – tj. kopičenje patoloških beljakovin. 
Glede na značilne spremembe regionalne presnove možganov, ki jih preučujemo s pozitronsko 
emisijsko tomografijo (PET) možganov z radioaktivnim fluorom (18F) označene deoksiglukoze, 
lahko razlikujemo med Alzheimerjevo boleznijo, demenco z Lewyjevimi telesci, frontotemporal-
no demenco in redkejšimi vzroki kognitivnega upada ter med Parkinsonovo boleznijo in drugimi 
nevrodegenerativnimi parkinsonizmi. Z ugotavljanjem integritete dopaminergičnega sistema 
(npr. scintigrafijo dopaminskega prenašalca, DaTSCAN) lahko razlikujemo med nevrodegener-
ativnimi parkinsonizmi in drugimi možnimi vzroki težav. Amiloidni PET možganov nam prikaže 
prisotnost in značilno razporeditev čezmernega kopičenja amiloida pri bolnikih z Alzheimerje-
vo boleznijo že pred pojavom kliničnih znakov bolezni. V prispevku predstavljamo nuklearno-
medicinske preiskave, obravnavamo indikacije in značilne spremembe ter omejitve teh preiskav 
pri diagnosticiranju nevrodegenerativnih bolezni možganov.

Slovenian
Medical
Journal

mailto:tomaz.rus%40kclj.si?subject=
mailto:tomaz.rus%40kclj.si?subject=


204

NEUROBIOLOGY

Zdrav Vestn | March – April 2020 | Volume 89 | https://doi.org/10.6016/ZdravVestn.2935

1 Introduction

Disease processes of the nervous sys-
tem, which are characterized by progres-
sive degeneration of neurons, are termed 
neurodegenerative disease. Clinically, 
neurodegenerative brain diseases are most 
commonly expressed by cognitive decline 
and/or movement disorders (1). Their 
common pathogenetic mechanism is the 
accumulation of pathological proteins in 
the nervous system that damage neurons 
and their connections (2).

The definitive diagnosis of neurode-
generative parkinsonisms can be made by 
histopathological examination of a brain 
tissue after the patient’s death. For the liv-
ing, the diagnosis is based on the clinical 
picture, but the results of imaging tests 
may also be helpful. In the diagnosis of 
dementia, biological markers are gaining 
ground, with the help of which we can al-
ready prove pathological processes in the 
brain in vivo. Thus, we know the markers 
of neurodegeneration, accumulation of 
pathological proteins – amyloid beta and 
tau protein (3).

Correct and early clinical diagnosis is 
important, as it determines the choice of 
treatment, outcome prediction, long-term 
plans of the patient and relatives and, 
last but not least, the selection of appro-
priate patients for research, which can 
significantly contribute to the success of 
clinical trials (4,5). In addition to clinical 
neurological and neuropsychological ex-
amination, laboratory tests of blood and 
cerebrospinal fluid, structural imaging 
and, in some cases, neurophysiological 
examinations, functional imaging meth-
ods also help in making a diagnosis. Pos-
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itron emission tomography (PET) using 
fluorine-18-labeled fluorodeoxyglucose 
(18F-FDG) can be used to study the me-
tabolism or synaptic activity of the brain 
and thus demonstrate possible neurode-
generation in the brain. Other functional 
imaging studies may show the integrity of 
neurotransmitter systems (e.g., dopamine 
transporter or dopamine receptor scin-
tigraphy) or the accumulation of patho-
logical proteins (e.g., amyloid beta and 
tau protein) (6). Brain activity can also be 
studied indirectly through changes in ce-
rebral blood flow by functional magnetic 
resonance imaging (MRI) or perfusion 
scintigraphy.

The article contains an overview of 
imaging methods, especially functional 
nuclear-medicine investigations, used in 
diagnosing neurodegenerative diseases 
of the brain, which are divided into two 
groups based on the predominant symp-
toms: dementia and parkinsonism (1).

1.1 18F-FDG PET of the brain

A brain PET with 18F-FDG (18F-FDG 
PET) is a nuclear medicine imaging meth-
od most commonly used in clinical prac-
tice to diagnose oncological, inflammatory 
and infectious as well as cardiac diseases 
(7), and in the last decade it has become 
the gold standard in diagnosing neurode-
generative brain diseases as well (8‑10).

The 18F-FDG radiopharmaceutical is a 
structural analogue of glucose, which is 
the main energy substrate of brain cells. 
The accumulation of 18F-FDG in the brain 
is due to high glucose uptake in neurons 
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and astrocytes. Upon uptake into brain 
cells, 18F-FDG is phosphorylated by the 
enzyme hexokinase. 18F-glucose-6-phos-
phate is no longer metabolized and re-
mains trapped in cells, allowing us to 
demonstrate the metabolic activity of the 
brain using PET. The uptake of 18F-FDG 
in the brain is closely related to neuronal 
synaptic activity, especially in the area of 
the gray matter and basal ganglia, and rep-
resents the metabolic activity of the brain 
(11). In patients with neurodegenerative 
diseases, functional changes in 18F-FDG 
PET of the brain usually appear several 
years before the visible signs of atrophy in 
structural brain imaging with computed 
tomography (CT) and MRI tomography 
(12).

18F-FDG PET of the brain is used in 
clinical practice in diagnosing dementia 
or cognitive impairment (8,10) and par-
kinsonism (9), in which we can distin-
guish many syndrome-specific patterns of 
18F-FDG accumulation, connected to the 
clinical picture. The role of CT in 18F-FDG 
PET is particularly important for correct-
ing the attenuation of PET images, while 
allowing us anatomical coregistration; for 
this purpose, we use the so-called localisa-
tion or low-dose CT. All modern PET/CT 
devices also enable capturing CT images 
in diagnostic quality, although the main 
purpose of the 18F-FDG PET examination 
is to define the functioning of individual 
areas of the brain. However, the role of 
diagnostic CT in these diseases is limited 
primarily to the exclusion of other disease 
states (e.g. brain tumors).

18F-FDG PET of the brain in Slove-
nia is performed in accordance with the 
guidelines of the European Association of 
Nuclear Medicine (EANM) (13). Patients 
need to fast for at least four hours before 
the examination, be able to cooperate (i.e. 
lie still for at least 45 minutes) and must 
not have severe claustrophobia.

For optimal performance of the test, 
it is crucial that blood sugar (BS) levels 
are properly regulated prior to 18F-FDG 
intake. Our center has set a limit of <10 

mmol/l, and the guidelines recommend a 
limit of BS <160 mg/dl, which is approx-
imately 9 mmol/l (13). Namely, the high 
level of BS reduces the uptake of 18F-FDG 
in the brain, which can result in the final 
PET images of poorer quality for diagnos-
tic purposes. At BS levels > 10 mmol/l, the 
test may be performed with appropriate 
preparation of the patient with a short-act-
ing insulin.

After intravenous radiopharmaceutical 
administration, patients have to lie still 
for 30 minutes in a darkened room with 
their eyes open (13), which is followed by 
imaging that lasts 10-15 minutes. For an 
optimal result of the examination, it is rec-
ommended that it be prepared jointly by a 
nuclear medicine specialist and a neurol-
ogist.

1.2 Visual representation of the 
integrity of the dopaminergic 
system

In addition to changes in brain metab-
olism, the integrity of the dopaminergic 
system can also be determined in neuro-
degenerative diseases using nuclear medi-
cine imaging methods. In parkinsonisms, 
dopaminergic neurons in the substantia 
nigra, of which nerve endings project in-
to the striatum, deteriorate. The decline 
of dopaminergic neurons and the associ-
ated presynaptic impairment of the dopa-
minergic system can be demonstrated in 
vivo by radiopharmaceuticals that bind 
to presynaptic neurons in the striatum or 
they are selectively adopted by them (14). 
The 18F-fluorodopa radiopharmaceutical 
demonstrates the activity of dopa decar-
boxylase and the ability to store dopamine 
in presynaptic neurons (14). A similar da-
ta on the state of the presynaptic dopami-
nergic system is obtained with the use of 
radiopharmaceuticals that selectively bind 
to the dopamine transporter on presynap-
tic neurons (dopamine transporter, DAP). 
For clinical purposes, the European Med-
icines Agency (EMA) and the U.S. Feder-
al Food and Drug Administration (FDA) 
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have approved the radiopharmaceutical 
123I-ioflupane (123I-β-CIT-FP) - the pro-
prietary name DaTSCAN, which is also 
routinely used in Slovenia. The third target 
protein that can be used to study the den-
sity of presynaptic neurons is the vesicu-
lar monoamine transporter 2 (VMAT2), 
a protein complex on the membrane of 
neurotransmitter vesicles that is involved 
in the transmission of monoamine neu-
rotransmitters, including dopamine (15).

For research purposes, the integrity 
of postsynaptic dopaminergic neurons in 
the basal ganglia can also be studied with 
radiopharmaceuticals that bind to the do-
pamine D2 receptor: 11C-racloprid and 
123I-iodobenzamide (IBZM) (14,16). Al-
though we can to some extent distinguish 
between Parkinson’s disease (PD) and oth-
er neurodegenerative parkinsonisms on 
the basis of this examination, this imaging 

has a much lesser differentiating power 
than 18F-FDG PET of the brain (17) and is 
not used for the purpose of distinguishing 
between parkinsonisms.

1.3 Visual representation of 
pathological proteins in the brain

Neurodegenerative diseases are char-
acterized by the deposition of various 
pathological proteins at specific sites in the 
brain. Amyloid beta, tau, and alpha-synu-
clein (α-syn) are most commonly involved 
in the pathophysiological process. Amy-
loid beta is deposited in the brain in ce-
rebral amyloid angiopathy and together 
with the tau protein in Alzheimer’s disease 
(AD). Tauopathies, or diseases in which 
the tau protein accumulates excessively, 
include frontotemporal dementia (FTD), 
corticobasal degeneration (CBD) and 

progressive supranuclear palsy (PSP) (the 
latter two diseases are clinically classified 
as so-called parkinsonisms plus). α-syn 
is deposited in the brain in PD, dementia 
with Lewy bodies (DLB), and in multiple 
system atrophy (MSA) (2). Thus, the accu-
mulation of a certain protein is not char-
acteristic of only one disease or syndrome, 
but pathological proteins can accumulate 
in various combinations in various neu-
rodegenerative syndromes. Thus, we can 
talk about a continuum of proteinopathies 
with different clinical pictures (Figure 1) 
(18).

Until recently, direct evidence of in-
dividual protein deposition was possible 
only by histopathological examination of 
a brain sample by immunohistochemical 
methods. Based on these methods, several 
groups have developed radiopharmaceuti-
cals that bind to pathological proteins in 
vivo. The first radiopharmaceutical that 
specifically binds to amyloid beta was de-
veloped at the turn of the millennium, the 
so-called Pittsburgh compound B (11C-PiB) 
(19). Due to technical limitations (marked 
with the short-lived radioactive element 
11C), 11C-PiB can only be used in estab-
lishments that have a cyclotron in the im-
mediate vicinity. In recent years, the EMA 
and the U.S. FDA have approved the use 
of three 18F-labeled radiopharmaceuticals 
that bind to amyloid beta for clinical use: 
18F-flutemetamol, 18F-florbetaben, and 
18F-florbetapir (20-22). The use of 18F-la-
beled radiopharmaceuticals, which have 
a longer half-life (110 minutes) and can 
therefore be transported to facilities up to 
a few 100 km from the cyclotron, has en-
abled the transition from amyloid imaging 
to clinical practice.

The development of radiopharmaceu-
ticals that bind to the tau protein is more 
complex, as the protein is located within 
nerve cells and exists in six isoforms. Tau 
is modified posttranslationally in various 
ways. It is deposited in different fibrillar 
forms, in different cells and areas of the 
brain (23). Several molecules are used for 
research purposes (the most common are 

Figure 1: Genetic, pathological and clinical continuum of neurodegenerative diseases 
- proteinopathies. Diseases associated with individual proteins, pathological substrates 
and genes that directly or indirectly affect the deposition of a single protein in the brain 
are presented. Overlap of proteinopathies in various clinical syndromes is evident. ALS 
- amyotrophic lateral sclerosis. FTD MND – frontotemporal dementia with motor neuron 
disease, svPPA - semantic variant of primary progressive aphasia, bFTD – behavioral variant 
frontotemporal dementia, nfvPPA – nonfluent variant of primary progressive aphasia, CBS 
– corticobasal syndrome, PSP – progressive supranuclear palsy, lvPPA – logopenic variant of 
primary progressive aphasia, AD – Alzheimer’s disease, DLB – dementia with Lewy bodies, PDD 
– Parkinson’s disease with dementia, PD – Parkinson’s disease, CJD – Creutzfeldt-Jakob disease, 
GSS - Gerstmann–Sträussler–Scheinker syndrome, NFP – neurofibrillary tangles. Adapted from 
Villemagne, 2015 (18).

https://doi.org/10.6016/ZdravVestn.2935
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progressive supranuclear palsy (PSP) (the 
latter two diseases are clinically classified 
as so-called parkinsonisms plus). α-syn 
is deposited in the brain in PD, dementia 
with Lewy bodies (DLB), and in multiple 
system atrophy (MSA) (2). Thus, the accu-
mulation of a certain protein is not char-
acteristic of only one disease or syndrome, 
but pathological proteins can accumulate 
in various combinations in various neu-
rodegenerative syndromes. Thus, we can 
talk about a continuum of proteinopathies 
with different clinical pictures (Figure 1) 
(18).

Until recently, direct evidence of in-
dividual protein deposition was possible 
only by histopathological examination of 
a brain sample by immunohistochemical 
methods. Based on these methods, several 
groups have developed radiopharmaceuti-
cals that bind to pathological proteins in 
vivo. The first radiopharmaceutical that 
specifically binds to amyloid beta was de-
veloped at the turn of the millennium, the 
so-called Pittsburgh compound B (11C-PiB) 
(19). Due to technical limitations (marked 
with the short-lived radioactive element 
11C), 11C-PiB can only be used in estab-
lishments that have a cyclotron in the im-
mediate vicinity. In recent years, the EMA 
and the U.S. FDA have approved the use 
of three 18F-labeled radiopharmaceuticals 
that bind to amyloid beta for clinical use: 
18F-flutemetamol, 18F-florbetaben, and 
18F-florbetapir (20-22). The use of 18F-la-
beled radiopharmaceuticals, which have 
a longer half-life (110 minutes) and can 
therefore be transported to facilities up to 
a few 100 km from the cyclotron, has en-
abled the transition from amyloid imaging 
to clinical practice.

The development of radiopharmaceu-
ticals that bind to the tau protein is more 
complex, as the protein is located within 
nerve cells and exists in six isoforms. Tau 
is modified posttranslationally in various 
ways. It is deposited in different fibrillar 
forms, in different cells and areas of the 
brain (23). Several molecules are used for 
research purposes (the most common are 

Figure 1: Genetic, pathological and clinical continuum of neurodegenerative diseases 
- proteinopathies. Diseases associated with individual proteins, pathological substrates 
and genes that directly or indirectly affect the deposition of a single protein in the brain 
are presented. Overlap of proteinopathies in various clinical syndromes is evident. ALS 
- amyotrophic lateral sclerosis. FTD MND – frontotemporal dementia with motor neuron 
disease, svPPA - semantic variant of primary progressive aphasia, bFTD – behavioral variant 
frontotemporal dementia, nfvPPA – nonfluent variant of primary progressive aphasia, CBS 
– corticobasal syndrome, PSP – progressive supranuclear palsy, lvPPA – logopenic variant of 
primary progressive aphasia, AD – Alzheimer’s disease, DLB – dementia with Lewy bodies, PDD 
– Parkinson’s disease with dementia, PD – Parkinson’s disease, CJD – Creutzfeldt-Jakob disease, 
GSS - Gerstmann–Sträussler–Scheinker syndrome, NFP – neurofibrillary tangles. Adapted from 
Villemagne, 2015 (18).

18F-AV1451, 18F-THK5317, 18FTHK5351 
and 11C-PBB3 (6)), the most researched 
use in the diagnosis of AD, and slightly 
less in the diagnosis of other tauopathies 
(CBD, PSP, FTLD- 17) (23).

The development of radiopharmaceuti-
cals with α-syn binding (PB, MSA, DLB) 
is still ongoing. The problem is mainly in 
the specificity of the radiopharmaceutical 
and the pharmacokinetic properties of 
the molecules used so far. In addition, the 
concentration of α-syn in the brain in al-
pha-synucleopathies, i.e. diseases in which 
excessive accumulation of α-syn occurs, is 
relatively low, which may present a prob-
lem in capturing PET images (24).

1.4 Reading nuclear medical 
examinations of the brain

The evaluation of 18F-FDG PET in the 
brain for clinical diagnostic purposes in-
volves specialists in nuclear medicine and 
neurology. After a visible (qualitative) 
evaluation of the image, we also use statis-
tical methods for image analysis. Images 
of an individual or a group of patients are 
compared with healthy subjects or with 
another group of patients. A precondition 
for comparison is spatial normalization, in 
which the image of an individual is spa-
tially adapted to the general pattern. Using 
univariate methods, among which statisti-
cal parametric mapping (SPM (25)) is most 
often used, we compare individual “vox-
els” of both groups of subjects and present 
the result in the form of normalized t- or 
z-maps (Figure 2a). The spatial distribu-
tion of changes is even more telling if the 
result obtained in this way is stereotacti-
cally projected onto the cerebral cortex, 
which is enabled by, for example, 3D-SPP 
Neurostat software (Three-dimensional 
Stereotactic Surface Projections (26). See 
Figure 2b). Similar softwares for statistical 
image processing are also included in soft-
ware packages provided by gamma and 
PET camera manufacturers (e.g. Scenium, 
Siemens Molecular Imaging Ltd.).

Using more advanced multivariate 
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analysis of 18F-FDG PET of the brain, spe-
cific metabolic patterns of functionally re-
lated areas of the brain can be identified 
as syndrome. One such method is multi-
variate network analysis based on scaled 
subprofile mapping - principal compo-
nent analysis, SSM-PCA (27). (See Figure 
8). This method is intended to identify 
samples as well as to prospectively moni-
tor the expression of metabolic samples in 
individual subjects (28).

2 The role of nuclear medicine 
in diagnosing dementia of 
18F-FDG PET of the brain

2.1 Alzheimer’s disease

AD is the most common neurodegen-
erative brain disease and the most com-
mon cause of dementia. It mostly affects 
people over the age of 65 (1). The num-

Figure 2: Demonstration of differences between Alzheimer’s disease 
patients and healthy subjects using statistical methods. A –Statistic 
parametric mapping, SPM; SPM12 variant, comparison between 
48 patients with AD and 40 healthy subjects, blue areas represent 
relatively reduced and red areas relatively increased brain metabolic 
activity, p = 0,001) (source: Department of Nuclear Medicine, UMC 
Ljubljana), B – stereotactic projection of statistical differences in brain 
metabolism between a patient with AD and a group of healthy subjects 
on the cerebral cortex (Neurostat 3D-SPP); only areas with relatively 
reduced metabolic activity are presented (source: Department of 
Nuclear Medicine, UMC Ljubljana).

.

. ber of patients in Slovenia is estimated at 
around 25,000 people (29). Clinically, the 
disease is characterized by a progressive 
cognitive decline, which is initially man-
ifested by impaired short-term memory 
and visual-spatial orientation, but gradu-
ally impairs all cognitive functions, lead-
ing to disability. This puts a huge burden 
on relatives, the health care system and 
society at large. Disease processes in the 
brain begin decades before the onset of 
dementia.

A summary of typical changes in brain 
metabolism in AD in 18F-FDG PET of the 
brain is presented in Table 1 and Figure 3B 
(8,10,30).

The changes first appear in the posteri-
or cingulate gyrus (31). With progression, 
characteristic parieto-temporal hypome-
tabolism occurs (Table 1), and with ad-
vanced disease, there is also a decline in 
metabolism in the prefrontal cortex. The 
changes are usually asymmetric and affect 
the posterior parts of the neocortex the 
most.

With the help of 18F-FDG PET of the 
brain, the course of AD can be monitored, 
as with the progression of the disease, the 
areas of reduced metabolism expand to a 
larger area of the neocortex, and the de-
cline becomes more pronounced. The use 
of 18F-FDG PET of the brain, in addition 
to early diagnosis, also helps to differen-
tiate between different types of dementia, 
the clinical picture of which, especially in 
the early stages of the disease, may overlap 
(32).

In patients with mild cognitive impair-
ment (MCI), 18F-FDG PET of the brain al-
lows us to predict progression to dementia 
with approximately 90% sensitivity and 
specificity (33). In patients with MCI as 
part of AD, hypometabolism is observed 
in areas typical of AD (Table 1) (31).

AD subtypes, such as posterior cortical 
atrophy (PCA) and the logopenic variant of 
primary progressive aphasia (lvPPA), have 
a characteristic distribution of metabolic 
changes. In PCA, we find hypometabolism 
of the occipital cortex, which largely coin-

Table 1: Metabolic characteristics of 
Alzheimer’s disease.

Reduced accumulation of 
radiopharmaceuticals in:

parietal lobe,

posterior temporal lobe,

posterior cingulate gyrus,

precuneus,,

medial temporal lobe and

prefrontal cortex (in advanced disease).

Preserved accumulation of 
radiopharmaceuticals in:

basal ganglia,

thalamus,

cerebellum,

primary sensory-motor cortex and

occipital lobe.
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ber of patients in Slovenia is estimated at 
around 25,000 people (29). Clinically, the 
disease is characterized by a progressive 
cognitive decline, which is initially man-
ifested by impaired short-term memory 
and visual-spatial orientation, but gradu-
ally impairs all cognitive functions, lead-
ing to disability. This puts a huge burden 
on relatives, the health care system and 
society at large. Disease processes in the 
brain begin decades before the onset of 
dementia.

A summary of typical changes in brain 
metabolism in AD in 18F-FDG PET of the 
brain is presented in Table 1 and Figure 3B 
(8,10,30).

The changes first appear in the posteri-
or cingulate gyrus (31). With progression, 
characteristic parieto-temporal hypome-
tabolism occurs (Table 1), and with ad-
vanced disease, there is also a decline in 
metabolism in the prefrontal cortex. The 
changes are usually asymmetric and affect 
the posterior parts of the neocortex the 
most.

With the help of 18F-FDG PET of the 
brain, the course of AD can be monitored, 
as with the progression of the disease, the 
areas of reduced metabolism expand to a 
larger area of the neocortex, and the de-
cline becomes more pronounced. The use 
of 18F-FDG PET of the brain, in addition 
to early diagnosis, also helps to differen-
tiate between different types of dementia, 
the clinical picture of which, especially in 
the early stages of the disease, may overlap 
(32).

In patients with mild cognitive impair-
ment (MCI), 18F-FDG PET of the brain al-
lows us to predict progression to dementia 
with approximately 90% sensitivity and 
specificity (33). In patients with MCI as 
part of AD, hypometabolism is observed 
in areas typical of AD (Table 1) (31).

AD subtypes, such as posterior cortical 
atrophy (PCA) and the logopenic variant of 
primary progressive aphasia (lvPPA), have 
a characteristic distribution of metabolic 
changes. In PCA, we find hypometabolism 
of the occipital cortex, which largely coin-

Table 1: Metabolic characteristics of 
Alzheimer’s disease.

Reduced accumulation of 
radiopharmaceuticals in:

parietal lobe,

posterior temporal lobe,

posterior cingulate gyrus,

precuneus,,

medial temporal lobe and

prefrontal cortex (in advanced disease).

Preserved accumulation of 
radiopharmaceuticals in:

basal ganglia,

thalamus,

cerebellum,

primary sensory-motor cortex and

occipital lobe.

cides with hypometabolism in DLB (34). 
The two syndromes can be distinguished 
by imaging a dopamine transporter (e.g. 
DaTSCAN), which is preserved in AD and 
PCA and defective in DLB (35,36). LvPPA 
is characterized by hypometabolism of 
the left temporal lobe (upper, middle, and 
lower temporal gyrus), left superior and 
inferior parietal lobe, and prekuneus (37). 
Metabolic changes in other forms of pri-
mary progressive aphasia are described in 
the chapter on frontotemporal dementias.

2.2 Dementia with Lewy bodies

DLB is the second most common neu-
rodegenerative dementia in patients older 
than 65 years (1,36). It is characterized by 
a fluctuating course of cognitive impair-
ment, parkinsonism, visual hallucinations 
early in the course of the disease, hyper-
sensitivity to neuroleptics and sleep disor-
ders in the REM phase (36).

A marked damage to the occipital lobes 
helps us to distinguish from AD with a 
sensitivity of 83–90% and a specificity of 

80–87% (32,38). In addition, the relatively 
preserved glucose metabolism in the pos-
terior part of cingulate gyrus (cingulate is-
land sign) (39) and in the medial temporal 
lobe (in the hippocampus) (40) helps to 
distinguish from AD. The typical distri-
bution of metabolic changes seen in DLB 
with 18F-FDG PET of the brain is present-
ed in Table 2 and Figure 3C.

2.3 Parkinson’s disease with 
dementia

Patients with PD often develop demen-
tia late in the course of the disease; after 20 
years of illness, it is present in as many as 
83% (41) of patients; we are talking about 
PD with dementia (PDD).

Patients with PDD have decreased 
18F-FDG uptake in different areas of the 
cerebral cortex. In the case of patients with 
PD without dementia, they have more 
pronounced hypometabolism in the pari-
etal and frontal cortex (42).

The metabolic characteristics of PDD 
overlap in part with DLB. The distinction 
between PDD and DLB is possible mainly 
on the basis of glucose hypometabolism in 
the occipital lobe, which is usually much 
more pronounced in patients with DLB. 
An additional distinction between DLB 
and PDD is also made possible by hy-
pometabolism of the lateral temporal cor-
tex, which is less pronounced in PDD than 
in DLB. Nevertheless, the distinction be-
tween the two diseases is sometimes com-
plicated and unreliable with the 18F-FDG 
PET examination of the brain. They are 
distinguished mainly clinically according 
to the time course of the onset of move-
ment disorders and cognitive decline. In 
DLB, the latter often occurs before the 
movement disorder or no later than one 
year after the onset of movement prob-
lems. Clinical and metabolic similarities 
between the two diseases are not surpris-
ing, as both cases involve alpha-nucleinop-
athy with accumulation of Lewy bodies in 
the cerebral cortex.
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2.4 Frontotemporal dementia

In patients under 65 years of age, FTD is 
the second most common form of demen-
tia after AD (1). Clinically, it is character-
ized by personality change and cognitive 
decline with impaired attention, speech, 
and executive functioning abilities. Ac-
cording to the clinical picture, we divide 
FTD into behavioural variant (bFTD) and 

two forms of primary progressive aphasia 
(PPA): nonfluent (nfvPPA) and semantic 
variant of PPA (svPPA).

Distinguishing between AD and bFTD 
(Figure 3C) using the 18F-FDG PET exam-
ination of the brain is easy in most cas-
es. The typical distribution of metabolic 
changes detected by 18F-FDG PET of the 
brain in the three FTD subtypes is pre-
sented in Table 3 (37,43-47).

2.5 Vascular Dementia

The diagnosis of vascular dementia is 
usually made on the basis of a clinical pic-
ture in the presence of vascular changes 
in morphological imaging examinations 
(CT and MRI). In specific circumstances, 
it makes sense to perform 18F-FDG PET of 
the brain to detect the concomitant pres-
ence of AD or other neurogenerative dis-
eases (30).

The pattern of accumulation of the ra-
diopharmaceutical depends on the size 
and blood flow of the affected vessels. If a 
larger cerebral artery is affected, the met-
abolic failure will be seen in the affected 
blood flow in line with the changes in the 
structural images (48). In the subcortical 
structure impairment due to multiple in-
farcts, the pattern of 18F-FDG accumula-
tion may be highly variable and will usu-
ally correlate with ischemic changes seen 

Table 2: Metabolic characteristics of dementia 
with Lewy bodies.

Reduced accumulation of 
radiopharmaceuticals in:

•	 primary visual cortex,

•	 occipital association cortex and

•	 less pronounced in the parietal and frontal 
cortex and the anterior cingulate gyrus.

Preserved accumulation of 
radiopharmaceuticals in:

•	 basal ganglia,

•	 thalamus,

•	 cerebellum,

•	 cerebellum,

•	 medial temporal lobes and

•	 posterior cingulate gyrus (cingulate island 
sign).

Figure 3: 18F-FDG PET of the brain in (A) a healthy subject, (B) a person with Alzheimer’s 
disease, (C) dementia with Lewy bodies, and (D) behavioral variant frontotemporal dementia 
(source: Department of Nuclear Medicine, UMC Ljubljana).

A – Normal image

B – Alzheimer's disease

C – Dementia with Lewy bodies 

D – Behavioural variant frontotemporal dementia 

Table 3: Characteristics of the most common subtypes of 
frontotemporal dementia (FTD) on 18F-FDG PET of the brain. bFTD - 
behavioral variant of FTD (44 46), svPPA - semantic variant of primary 
progressive aphasia (PPA) (37,47), nfvPPA - non-fluent variant of PPA 
(43).

bFTD:

Reduced accumulation of radiopharmaceuticals in:

frontal lobes (orbitofrontal, frontopolar, medial frontal, dorsolateral, lateral 
inferior frontal and in anterior cigulate gyrus);

temporal lobes and subcortical structures of the gray matter (advanced 
disease).

svPPA:

Reduced accumulation of radiopharmaceuticals in:

left anterior temporal lobe.

nfvPPA (relatively heterogeneous group):

Reduced accumulation of radiopharmaceuticals in:

left frontal cortex (lower and middle frontal, dorsolateral prefrontal and 
frontopolar cortex, Broca’s area);

left temporal cortex (Wernicke’s area, middle and inferior temporal regions);

in the initial stages of the disease hypometabolism of the left insula and 
frontal opercular region.

in the initial stages of the disease hypometabolism of the left insula and 
frontal opercular region.

hippocampus and amygdaloid nucleus.
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two forms of primary progressive aphasia 
(PPA): nonfluent (nfvPPA) and semantic 
variant of PPA (svPPA).

Distinguishing between AD and bFTD 
(Figure 3C) using the 18F-FDG PET exam-
ination of the brain is easy in most cas-
es. The typical distribution of metabolic 
changes detected by 18F-FDG PET of the 
brain in the three FTD subtypes is pre-
sented in Table 3 (37,43-47).

2.5 Vascular Dementia

The diagnosis of vascular dementia is 
usually made on the basis of a clinical pic-
ture in the presence of vascular changes 
in morphological imaging examinations 
(CT and MRI). In specific circumstances, 
it makes sense to perform 18F-FDG PET of 
the brain to detect the concomitant pres-
ence of AD or other neurogenerative dis-
eases (30).

The pattern of accumulation of the ra-
diopharmaceutical depends on the size 
and blood flow of the affected vessels. If a 
larger cerebral artery is affected, the met-
abolic failure will be seen in the affected 
blood flow in line with the changes in the 
structural images (48). In the subcortical 
structure impairment due to multiple in-
farcts, the pattern of 18F-FDG accumula-
tion may be highly variable and will usu-
ally correlate with ischemic changes seen 

Table 2: Metabolic characteristics of dementia 
with Lewy bodies.

Reduced accumulation of 
radiopharmaceuticals in:

•	 primary visual cortex,

•	 occipital association cortex and

•	 less pronounced in the parietal and frontal 
cortex and the anterior cingulate gyrus.

Preserved accumulation of 
radiopharmaceuticals in:

•	 basal ganglia,

•	 thalamus,

•	 cerebellum,

•	 cerebellum,

•	 medial temporal lobes and

•	 posterior cingulate gyrus (cingulate island 
sign).

Figure 3: 18F-FDG PET of the brain in (A) a healthy subject, (B) a person with Alzheimer’s 
disease, (C) dementia with Lewy bodies, and (D) behavioral variant frontotemporal dementia 
(source: Department of Nuclear Medicine, UMC Ljubljana).

A – Normal image

B – Alzheimer's disease

C – Dementia with Lewy bodies 

D – Behavioural variant frontotemporal dementia 

Table 3: Characteristics of the most common subtypes of 
frontotemporal dementia (FTD) on 18F-FDG PET of the brain. bFTD - 
behavioral variant of FTD (44 46), svPPA - semantic variant of primary 
progressive aphasia (PPA) (37,47), nfvPPA - non-fluent variant of PPA 
(43).

bFTD:

Reduced accumulation of radiopharmaceuticals in:

frontal lobes (orbitofrontal, frontopolar, medial frontal, dorsolateral, lateral 
inferior frontal and in anterior cigulate gyrus);

temporal lobes and subcortical structures of the gray matter (advanced 
disease).

svPPA:

Reduced accumulation of radiopharmaceuticals in:

left anterior temporal lobe.

nfvPPA (relatively heterogeneous group):

Reduced accumulation of radiopharmaceuticals in:

left frontal cortex (lower and middle frontal, dorsolateral prefrontal and 
frontopolar cortex, Broca’s area);

left temporal cortex (Wernicke’s area, middle and inferior temporal regions);

in the initial stages of the disease hypometabolism of the left insula and 
frontal opercular region.

in the initial stages of the disease hypometabolism of the left insula and 
frontal opercular region.

hippocampus and amygdaloid nucleus.

on morphological imaging. Compared to 
AD, vascular dementia is characterized 
by a different pattern with reduced accu-
mulation subcortically and in the primary 
sensorimotor cortex, whereas the associa-
tion areas are less affected (49).

2.6 Sporadic Creutzfeldt-Jakob 
disease

Sporadic Creutzfeldt-Jakob disease 
(CJD) is a rare rapidly progressive neuro-
degenerative disease that results from the 
deposition of pathological prion protein 
in the brain. It manifests clinically as a 
rapidly progressive cognitive decline that 
progresses to akinetic mutism as the dis-
ease progresses (50). 18F-FDG PET of the 
brain shows extensive areas of cerebral 

hypometabolism, which may be relatively 
asymmetric and most pronounced in the 
frontal, parietal lobes (primarily medi-
al), in the head of the caudate, and in the 
thalamus. The metabolism of the temporal 
lobe and cerebellum is relatively preserved 
(51).

3 Visual representation 
of pathological protein 
accumulation in the brain

3.1 Amyloid brain imaging in the 
diagnosis of dementia

The basic pathomorphological features 
of AD are intracellular neurofibrillary tan-
gles composed of hyperphosphorylated 
tau protein and amyloid plaques consist-
ing of amyloid beta (52). Alzheimer’s dis-
ease is now understood as a continuum of 
pathological processes that begin decades 
before the first clinical signs appear. The 
accumulation of pathological proteins 
triggers a series of processes that over the 
years lead to cognitive decline and demen-
tia. Decreased brain metabolism topo-
graphically correlates with the accumula-
tion of tau protein or neurodegeneration 
even before structural imaging reveals 
signs of atrophy. Cognitive decline occurs 
with delay; from subjective cognitive com-
plaint through MCI to fully developed de-
mentia (Figure 4) (12,53). Proteinopathy 
can therefore be demonstrated before the 
onset of clinical signs.

In addition to imaging, pathological 
proteins can also be determined in cere-
brospinal fluid; AD is characterized by 
decreased values of amyloid beta and in-
creased values of tau protein and phos-
phorylated tau protein (p-tau) (55). The 
sensitivity of the examination for diag-
nosing AD is 91–93% and the specificity 
is 81–84% (56). In Slovenia, the examina-
tion is available in tertiary neurological 
centers.

The advantage of imaging using radio-
pharmaceuticals that bind to amyloid beta 
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and protein lies in the non-invasiveness of 
the examination. And we can also monitor 
the spatial and temporal distribution of 
amyloid beta (6). On the other hand, com-
pared to cerebrospinal fluid diagnostics 
the examination is more expensive. The 
main importance of proving a pathologi-
cal substrate in vivo is in early and correct 
diagnosis. Early diagnosis using biomark-
ers is also a prerequisite for selecting sub-
jects in AD clinical studies to monitor the 
efficacy of specific treatments (57). Such 
investigations will have great clinical sig-
nificance in the future, when causal treat-
ment is available and it may be possible 
to treat people with AD in the preclinical 
phase of the disease (6).

Due to the ethical dilemmas posed by 
investigations because they can confirm 
the diagnosis of a severe and incurable 
disease, detailed guidelines with indica-
tions for amyloid imaging examinations 
have been prepared (58,59). Imaging is 
in place in patients with advanced MCI, 
in patients with an atypical course, and in 
patients with dementia, who are under 65 
years of age. However, the study does not 
make sense in elderly patients with a clas-

Figure 4: Sequence of pathophysiological processes in Alzheimer’s disease (12). Aβ - amyloid 
beta, MCI - mild cognitive impairment. Adapted from Jack, 2010 (53) and Petersen, 2010 (54).
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sic clinical picture of dementia in AD, to 
determine the degree of dementia, nor in 
healthy subjects with a positive family his-
tory and in persons with subjective cogni-
tive complaint (59).

The first and most researched specif-
ic amyloid radiopharmaceutical 11C-PiB 
(19) accumulates in AD primarily in the 
frontal cortex, cingulate gyrus, precune-
us, striatum, parietal and lateral temporal 
cortex. The occipital, somatosensory, and 
mesiotemporal cortex accumulates less 
radiopharmaceuticals, as does the cere-
bellar cortex (60). This pattern is consis-
tent with the results of histopathological 
studies of amyloid beta distribution. The 
evaluation of amyloid imaging is dichot-
omous regardless of the described pattern 
of distribution of amyloid beta accumula-
tion: the result is either positive or nega-
tive (Figure 5). There are three radiophar-
maceuticals labeled with 18F registered for 
clinical use: 18F-flutemetamol (Vizamyl), 
18F-florbetaben (NeuraCeq) and 18F-flor-
betapir (AMYViD). In patients with AD, 
they have a similar distribution as 11C-PiB 
and also distinguish well between AD and 
healthy subjects (60). Radiopharmaceuti-
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cal florbetapir is clinically most common-
ly used, with a sensitivity of 92% and a 
specificity of 90.5-100% (61).

For AD subtypes also, such as, e.g. pos-
terior cortical atrophy (PCA) or logopenic 
variant of primary progressive aphasia 
(lvPPA), amyloid imaging shows accumu-
lation of amyloid beta. The distribution of 
amyloid in the brain is similar in all sub-
types of AD.

Amyloid beta is also a basic pathophys-
iological factor in cerebral amyloid angi-
opathy (CAA), in which it accumulates in 
the media and adventitia of the leptomen-
ingeal and cortical arteries and arterioles 
in the central nervous system. This pro-
cess results in vasculopathy with ischemic 
events and cerebral hemorrhage. Amyloid 
imaging can also demonstrate amyloid 
beta accumulation in CAA, and the accu-
mulation pattern is slightly different than 
in AD; more of it accumulates occipitally 
(62).

Amyloid imaging is also positive in 
about 50% of patients with DLB (63). The 
accumulation pattern in DLB is similar to 
that in AD, but the intensity is lower (60). 
DLB is otherwise characterized by α-syn 

Figure 5: Amyloid PET with 18F-flutemetamol (Vizamyl) in a healthy 
subject (A) and in a patient with AD (B). In a healthy subject, the 
radiopharmaceutical binds nonspecifically in the deep white brain 
and in some deep nuclei, and there is no accumulation in the cerebral 
cortex. In a patient with AD, the border between the gray and white 
brain is blurred, the accumulation of radiopharmaceutical is present 
all the way to the edge of the cerebral cortex (source: Department of 
Nuclear Medicine, UMC Ljubljana).

accumulation. No amyloid beta accumu-
lation was detected in FTD and CJD by 
amyloid imaging.

3.2 Imaging of tau protein in 
dementia

In addition to amyloid imaging, in re-
cent years tau imaging has been available, 
but for now only for research purposes. 
There are several radiopharmaceuticals 
available, the most commonly used being 
AV1451. The distribution of tau in AD 
and other tauopathies, in contrast to am-
yloid beta, correlates well with the clinical 
picture, so tau imaging is also suitable for 
monitoring disease progression (60).

4 The role of nuclear medicine 
investigations in the diagnosis 
of neurodegenerative 
parkinsonisms

Parkinsonism is a clinical syndrome 
of bradykinesia with associated stiffness 
and/or resting tremor (64). It is a central 
clinical feature of a group of neurodegen-
erative diseases, among which Parkinson’s 
disease (PD) is the most common. Less 
common are the so-called parkinsonims 
plus, in which we detect, in addition to 
parkinsonism, additional symptoms and 
signs. These include multiple system atro-
phy (MSA), progressive supranuclear pal-
sy (PSP), corticobasal degeneration (CBD) 
and dementia with Lewy bodies (DLB).

Like PD and DLB, MSA is classified 
as an alpha-synucleinopathy, but in con-
trast to PD, its characteristics are: poorer 
response to levodopa therapy, autonom-
ic and in some forms cerebellar involve-
ment (1,65). PSP and CBD are classified 
as tauopathies. Unlike PD, PSP is char-
acterized by levodopa-unresponsive par-
kinsonism with associated early postural 
disorder or falls, vertical eye movement 
disorders, and cognitive decline (1,66). 
CBD is distinguished from PD according 
to a markedly asymmetric clinical picture, 
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in which parkinsonism is associated with 
dystonia, myoclonus, orobuccal apraxia 
and limb apraxia, cortical sensory failure 
and alien limb syndrome (1,67).

4.1 Visual representation of the 
integrity of the dopaminergic 
system

The diagnosis of PD and other parkin-
sonisms can be made clinically with con-
siderable accuracy (64). Sometimes, how-
ever, it is clinically difficult to distinguish 
between essential or dystonic tremor and 
tremor in PD or other parkinsonisms or 
between neurodegenerative and iatrogenic 
parkinsonism (68,69). In these cases, scin-
tigraphy of the dopamine transporter with 
123I-ioflupane (DaTSCAN, Figure 6) can 
be crucial. The investigation is also suit-
able for distinguishing between AD and 
DLB (36,69), as patients with DLB, simi-
lar to other neurodegenerative parkinson-
isms, have presynaptic dopaminergic im-
pairment. It sometimes also makes sense 
to diagnose parkinsonism, which does not 
progress for a long time, or vascular par-
kinsonism, in which the result is usually 
normal, unless the patient has a vascular 
change in substantia nigra or nigrostri-
atal connections. When distinguishing 
between essential tremor and PD, DaTS-
CAN achieves specificity and sensitivity of 

about 95% (70), and when distinguishing 
between DLB and other dementias, 85% 
or 95% (35).

Some medicines may have some effect 
on the outcome of DaTSCAN (central 
nervous system stimulants, some antide-
pressants, opioids, rotigotine among the 
dopaminergic drugs), but this effect is rel-
atively small, so they are usually not dis-
continued before the test (71).

Since the presynaptic dopaminergic 
system is impaired in all neurodegener-
ative parkinsonisms, this investigation 
is not appropriate for distinguishing be-
tween them. For this purpose, we need to 
study the metabolism of the whole brain 
with 18F-FDG PET with emphasis on the 
detection of activity in the basal ganglia.

4.2 18F-FDG PET of the brain in 
parkinsonism

In contrast to parkinsonism plus, PD 
is characterized by preserved or even in-
creased metabolic activity in the basal 
ganglia (primarily the putam and globus 
pallidus) as a result of a disturbance in the 
level of inhibitory neurons projecting from 
the substantia nigra (72) (Figure 7A). Pa-
tients with PD have globally reduced cere-
bral cortex metabolism (73). With disease 
progression and cognitive decline, cortical 
hypometabolism deepens as described in 
the section on PD with dementia.

Statistical network analysis (SSM-PCA 
method described earlier) have identi-
fied a Parkinson’s disease related pattern 
(PDRP) in several independent cohorts 
of patients with PD in Figure 8, character-
ized by marked parietooccipital hypome-
tabolism and in the premotor cortex and 
associated hypermetabolism in the areas 
of the putamnes, thalamus, brainstem, 
central cerebellum, and primary senso-
rimotor cortex (74,75).

In patients with MSA the 18F-FDG 
PET of the brain shows decreased glucose 
metabolism in the striatum (especially in 
the posterior parts of the putamen), in 
the brainstem, and cerebellum (76). With 

Figure 6: Scintigraphy of a dopamine transporter with 123I-ioflupane 
(DaTSCAN) in a healthy subject (A) and a patient with Parkinson’s 
disease (B) (source: Department of Nuclear Medicine, UMC Ljubljana).
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18F-FDG PET of the brain, we can also 
distinguish between subtypes of MSA: 
Parkinson’s (MSA-P), in which the clini-
cal picture is dominated by parkinsonism 
(markedly reduced metabolism in the 
basal ganglia) and cerebellar (MSA-C), in 
which ataxia is at the forefront (marked-
ly reduced metabolism in the cerebellum) 
(Figure 7B) (77).

PSP is characterized by marked hy-
pometabolism of the bilateral medial 
frontal cortex, premotor and prefrontal 
areas, and striatum (more pronounced in 
the area of the caput nuclei caudati), in the 
thalamus, and in the brainstem (Figure 
7C) (78).

In CBD the 18F-FDG PET of the brain, 
according to the clinical picture, shows 
markedly asymmetric changes in the brain 
with a more pronounced decrease in met-
abolic activity on the opposite side from 
the more affected side. Hypometabolism 
is usually most pronounced in the parietal 
cortex, but is also present in the primary 
somatosensory cortex, medial and later-
al premotor area, striatum, and thalamus 
(Figure 7D) (78).

The metabolic activity of the brain is 
affected by a number of drugs. Antipsy-
chotics (both classical and newer) are 
clinically important, as they significantly 
increase metabolic activity in the basal 
ganglia (79). Therefore, if neurodegenera-

Figure 7: 18F-FDG PET of the brain in (A) Parkinson’s disease, (B) multiple system atrophy, (C) 
progressive supranuclear palsy, and (D) corticobasal degeneration (source: Department of 
Nuclear Medicine, UMC Ljubljana).

A – Parkinskon's disease

B – Multiple system atrophy

C – Progressive supranuclear palsy 

D – Corticobasal degeneration

tive parkinsonism is suspected, it should 
be noted that the patient is receiving an 
antipsychotic to avoid the PD-specific 
false-positive 18F-FDG PET of the brain. 
Other drugs have no major effect and are 
not discontinued prior to investigation.

Parkinsonism can be distinguished 
based on the assessment of 18F-FDG PET 
of the brain, and the accuracy is signifi-
cantly increased by using a statistical al-
gorithm that calculates the expression of 
all Parkinson’s patterns in each individ-
ual subject. Based on the expression of 
the patterns, the algorithm calculates the 
probability of the disease for a particular 
parkinsonism (28).

5 The role of MRI in diagnosis 
and parallels to metabolic 
imaging

In this article, we present the possibili-
ties for the use of functional nuclear med-
icine imaging to improve the reliability of 
the established clinical diagnosis. These 
studies are not performed routinely in all 
patients, as they are not available in all 
centers, even in tertiary institutions, they 
are usually used when faced with a clinical 
dilemma or with a specific clinical issue. 
In contrast, structural imaging, such as 
computed tomography (CT) or magnetic 
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resonance imaging (MRI), is the recom-
mended screening method to rule out a 
possible curable cause of cognitive de-
cline (80). Assessment of brain structure 
may contribute to improved accuracy of 
clinical diagnosis. If there are no contra-
indications, MRI is the method of choice 
due to its higher resolution and the abili-
ty to display a variety of tissue properties. 
Accurate assessment and the opinion of a 
neuroradiologist are indispensable in the 
treatment, and a systematic approach to 
examining MRI images also helps doctors 
of other specialties to make a diagnosis.

In the proposed simplified brain MRI 
screening algorithm, we can first focus on 
the presence of changes that are not ex-
pected in the brain (80). In this way we 
exclude the presence of a so-called surgi-
cal cause of cognitive decline that can be 
cured. This group mainly includes intra-
cranial tumors and subdural hematoma. 
An increased amount of otherwise intra-
cranially normally present structure, i.e. 
cerebrospinal fluid, manifested by enlarge-
ment of cerebral ventricles, may also indi-
cate the cause of cognitive impairment. In 
the differential diagnosis of cognitive dis-
orders or parkinsonisms, such a result of 
structural imaging and the corresponding 
clinical picture usually makes us think of 
normotensive hydrocephalus.

In the next step, we focus on chang-
ing the signal, which is generally uni-
form within the white and gray matter. 

Figure 8: Metabolic pattern of Parkinson’s disease (PDRP), identified in 
a sample of Slovenian patients (75).

Elevated white matter signal intensity on 
T2-weighted and FLAIR (fluid attenua-
tion inversion recovery) sequences may 
indicate a vascular etiology of cognitive 
impairment or parkinsonism, and the 
presence of other signs of small vessel dis-
ease, such as lacunar or silent infarcts, may 
further contribute to the diagnosis (81). 
Susceptibility weighted imaging (SWI) is 
a newer MR pulse sequence that provides 
better contrast due to the different mag-
netic susceptibility of substances such as 
iron, blood, and the breakdown products 
of hemoglobin and calcium (82). Signal 
changes in SWI may indicate the presence 
of microbleeds in the context of small 
vessel disease or amyloid angiopathy. The 
presence of iron or calcifications may also 
be a nonspecific indicator of neurodegen-
erative pathology in dementia and various 
movement disorders (83). Sensitive for the 
diagnosis of CJD is the diffusion weight-
ed imaging (DWI), in which an increased 
signal is found in the area of the cerebral 
cortex (so-called cortical band) and bas-
al ganglia due to the limited movement of 
water molecules (50).

In the third step, we evaluate the atro-
phy pattern by examining the T1-weight-
ed 3D gradient echo sequences in different 
planes. In AD the atrophy of the medial 
temporal lobes is most common, but in 
advanced AD other areas, including the 
parietal and frontal lobes, are also atrophic 
(84). In forms of FTD in which speech dis-
order stands out, the pattern of atrophy is 
asymmetric - atrophy is more pronounced 
in the left hemisphere: temporally in svP-
PA and lvPPA or frontally in nfvPPA (85). 
In bFTD, atrophy is expressed primarily 
frontally. It is characteristic of all demen-
tias, however, that with the progression of 
the disease, along with the appearance of 
symptoms of impairment of new cognitive 
domains, there is also a spread of atrophy, 
which makes structural imaging less in-
dicative in the advanced stage of the dis-
ease. Symmetrical generalized atrophy can 
be accompanied by, for example, AD, DLB 
and vascular dementia, and to a lesser ex-
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tent it can also be expressed in healthy ag-
ing (80).

While atrophy on MRI is not partic-
ularly pronounced in patients with idio-
pathic PD without associated dementia, 
specific patterns of atrophy may contrib-
ute to distinguishing idiopathic PD from 
other parkinsonisms or between individ-
ual parkinsonisms plus. PSP is character-
ized by atrophy of the mesencephalon and 
frontal lobe. In CBD, MR examination 
usually reveals asymmetric atrophy fron-
toparietally, but atrophy of the frontal lobe 
can also be relatively symmetrical. MSA is 
characterized by pontocerebellar atrophy 
(86).

There are many parallels between the 
patterns of atrophy on structural MR 
examination and hypometabolism on 
18F-FDG PET images of the brain - atro-
phic areas are usually characterized by 
lower metabolic activity and vice versa. 
Nevertheless, the combination of both 
methods can significantly contribute to 
the detection of pathological changes and 
diagnosis (87). Metabolic PET imaging is 
complemented by some newer MRI meth-
ods, which are not yet used regularly in 
clinical practice. With functional MRI at 
rest, we can identify the so-called brain’s 
default network. It consists of the brain 
areas that are most active in the so-called 
“dormant state” (88). Some neurodegener-
ative diseases, including AD, are charac-
terized by degradation of this pattern (89). 
By measuring cerebral blood flow, which 
is directly dependent on the metabolic ac-
tivity of the brain, MRI can also provide 

information similar to 18F-FDG PET of the 
brain. Various MRI perfusion methods are 
most often used, such as the T2* and T1 
perfusion methods, in which the patient is 
given the gadolinium contrast agent (Gd-
CA). Similar results can be obtained with 
the arterial spin labeling method, which 
does not require Gd-CA.

6 Conclusion

Imaging biomarkers of neurodegener-
ative brain diseases are becoming an in-
creasingly important clinical tool in early 
diagnosis as well as in research. Nuclear 
medical imaging can significantly improve 
the accuracy of the diagnosis of neurode-
generative brain diseases by proving brain 
pathology in a non-invasive way. With the 
development of radiopharmaceuticals, the 
possibilities of demonstrating patholog-
ical processes in the brain are constantly 
expanding.

Due to the diverse and overlapping 
clinical picture of neurodegenerative pro-
teinopathies, the diagnosis of these diseas-
es is increasingly made with biomarkers. 
For research purposes, the diagnosis of 
AD is no longer made on the basis of clin-
ical criteria, but using the so-called A/T/N 
classification based on the results of amy-
loid-beta (A) and tau protein (T) accumu-
lation in the brain and evidence of nerve 
cell damage or neurodegeneration (N) 
(90). Given the growing role of biomark-
ers, we expect that in the future diagno-
ses of neurodegenerative diseases will be 
based primarily on these findings.
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