Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 3: The basic principles of magnetic resonance imaging

  • Bojan Božič Inštitut za biofiziko Medicinska fakulteta Univerza v Ljubljani Vrazov trg 2 1000 Ljubljana
  • Luka Kristanc Osnovno zdravstvo Gorenjske ZD Kranj Gosposvetska 10 4000 Kranj
  • Gregor Gomišček Zdravstvena fakulteta Univerza v Ljubljani Zdravstvena pot 5 1000 Ljubljana
Keywords: MRI, contrast, frequency encoding, spatial reconstruction, resolution

Abstract

Two basic problems have to be solved when dealing with imaging techniques – the adequate image contrast and the spatial reconstruction of images. In this article, the basic concepts of solving these two problems in the case of magnetic resonance imaging (MRI) are shown. Based on the spin echo, three ways of contrast optimization, i.e., spin density, T1- and T2-weighted MRI, are dealt with more thoroughly. The use of contrast media is also discussed. Furthermore, we explain the basic method of spatial encoding in MRI, i.e., the determination of the location of tissue signal source with the use of magnetic field gradients (“the principle of frequency encoding”), and the use of the Fourier transform. Finally, the back-projection reconstruction technique is presented.

Downloads

Download data is not yet available.

References

Božič B, Kristanc L, Gomišček G. Magnetna resonanca, pojav z velikim medicinskim potencialom, a zapletenim fizikalnim ozadjem – 1. del: Kratek pregled. Zdrav Vestn 2013; 82: 746-54.

Božič B, Kristanc L, Gomišček G. Magnetna resonanca, pojav z velikim medicinskim potencialom, a zapletenim fizikalnim ozadjem – 2. del: Osnove magnetne resonance. Zdrav Vestn 2013; 82: 851–8.

Demšar F, Jevtić V, Bačić GG. Slikanje z magnetno resonanco. Ljubljana: Litera picta; 1996.

Brown MA, Semelka RC. MRI: Basic principles and applications. 4th ed. Hoboken (NJ): Wiley--Blackwell; 2010.

Lauterbur PC. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242 (5394): 190–1.

Haacke EM, Brown RF, Thompson M, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: J. Wiley & Sons; 1999.

Fukushima E, Roeder SBW. Experimental pulse NMR. Reading (MA): Addison-Wesley; 1981.

Bydder GM. Clinical applications of gadolinium--DTPA. In: Stark DD, Bradley WG, eds. Magnetic resonance imaging. St. Louis: C.V. Mosby; 1988.

Krause W. Contrast agents I: magnetic resonance imaging. Berlin: Springer; 2001.

Ožura A, Horvat Ledinek A, Starovasnik B, Sever A, Vodušek DB. Aleksija brez agrafije pri tumorski obliki multiple skleroze: prikaz primera. Zdrav Vestn 2009; 78: 9–12.

Foster MA. Magnetic resonance in medicine and biology. New York: Pergamon Press: 1984.

Žele T, Matos B, Prestor B, Knific J, Bajrović FF. Računalniško podprto predoperativno interaktivno 3-D načrtovanje operativnega posega v nevrokirurgiji. Zdrav Vestn 2006; 75: 703–11.

Vovk A, Cox RW, Šuput D, Stare J, Saad ZS. Uporaba statističnih podpisov za izdelavo verjetnostnih map zdravih in obolelih možganov–nov diagnostični pripomoček? Zdrav Vestn 2011; 80: 476–482.

Sobol WT. The physics of magnetic resonance imaging. 1st ed. New York: Taylor & Francis; 2010.

Stark DD, Bradley WG. Magnetic resonance imaging. St. Louis (MO): C.V. Mosby; 1988.

Abragam A. Principles of nuclear magnetism. London: Oxford University Press; 1985.

How to Cite
1.
Božič B, Kristanc L, Gomišček G. Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 3: The basic principles of magnetic resonance imaging. ZdravVestn [Internet]. 1 [cited 19Oct.2019];83(1). Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/1077
Section
Review