The effectiveness of ultrasound investigation of the chest

  • Igor Kocijančič University Medical Centre Ljubljana, Ljubljana, Slovenia
Keywords: Ultrasound, Pleural effusion, Pneumothorax, Lung diseases

Abstract

Chest ultrasonography (CHUS) is a useful imaging tool for thoracic soft tissues, pleural space and adjacent processes in the lung parenchyma. Unlike conventional radiography, CT or MRI, this non-ionizing imaging method is operator created and is very useful in patients in intensive care units (ICU) because of its simplicity and reproducibility. The ICU patient can be examined in supine, lateral or partly lateral position with the convex small-radius ultrasound probes using intercostal spaces as an acoustic window. Supine analysis of the anterior chest wall rules out pneumothorax, while lateral approach detects clinically relevant pleural effusion and parenchymal consolidations. CHUS is the method of choice in detection, characterization and volume estimation of free and/or loculated pleural fluid. According to our own study results, pleural effusion is most readily detected and measured during expiration. In our study we found healthy individuals with variable amounts of physiological pleural fluid, therefore a positive result should not be taken as a sign of occult pleural disease. With CHUS we can explore and characterise lung consolidations from the moment they reach the visceral pleura. CHUS can also contribute important data in critically ill patients with pulmonary embolism. CHUS exploration of the diaphragm can reliably evaluate respiratory movements since even a substantial pleural effusion does not affect the amplitude of diaphragmatic excursion.

Downloads

Download data is not yet available.

References

Možina H. Prosen G, Matevž P, eds. Lung ultrasound I. – basic sonographic patterns. In: 2th WINFOCUS World Congress on ultrasound in emergency and critical care. e-summary of selected lectures. 2003 Sep 07-10; Ljubljana, Slovenija. V Ljubljani: Zdravniško društvo; 2016.

Možina H. Urgentni ultrazvok pljuč. In: Gričar M, Vajd R, eds. Urgentna medicina: izbrana poglavja 2017. V Ljubljani: Slovensko združenje za urgentno medicino; 2017. pp. 106-12.

Prosen G, Klemen P, Štrnad M, Grmec S. Combination of lung ultrasound (a comet-tail sign) and N-terminal pro-brain natriuretic peptide in differentiating acute heart failure from chronic obstructive pulmonary disease and asthma as cause of acute dyspnea in prehospital emergency setting. Crit Care. 2011;15(2):R114. https://doi.org/10.1186/cc10140 https://pubmed.ncbi.nlm.nih.gov/21492424

Strnad M, Zadel S, Klemenc-Ketis Z, Prosen G. Identification of lung sliding: a basic ultrasound technique with a steep learning curve. Signa Vitae. 2013;8(1):31-5. https://doi.org/10.22514/SV81.052013.5

Strnad M, Prosen G, Borovnik Lesjak V. Bedside lung ultrasound for monitoring the effectiveness of prehospital treatment with continuous positive airway pressure in acute decompensated heart failure. Eur J Emerg Med. 2016;23(1):50-5. https://doi.org/10.1097/MEJ.0000000000000205 https://pubmed.ncbi.nlm.nih.gov/25222428

Lichtenstein DA. General Ultrasound in the critically Ill. Berlin: Springer-Verlag; 2002. pp. 96-133. https://doi.org/10.1007/b138125

Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117-25. https://doi.org/10.1378/chest.07-2800 https://pubmed.ncbi.nlm.nih.gov/18403664

Miller A. Practical approach to lung ultrasound. BJA Educ. 2016;16(2):39-45. https://doi.org/10.1093/bjaceaccp/mkv012

Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al.; International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS). International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577-91. https://doi.org/10.1007/s00134-012-2513-4 https://pubmed.ncbi.nlm.nih.gov/22392031

Campbell SJ, Bechara R, Islam S. Point-of-Care Ultrasound in the Intensive Care Unit. Clin Chest Med. 2018;39(1):79-97. https://doi.org/10.1016/j.ccm.2017.11.005 https://pubmed.ncbi.nlm.nih.gov/29433727

Müller NL. Imaging of the pleura. Radiology. 1993;186(2):297-309. https://doi.org/10.1148/radiology.186.2.8421723 https://pubmed.ncbi.nlm.nih.gov/8421723

Colins JD, Burwell D, Furmanski S, Lorber P, Steckel RJ. Minimal detectable pleural effusions. A roentgen pathology model. Radiology. 1972;105(1):51-3. https://doi.org/10.1148/105.1.51 https://pubmed.ncbi.nlm.nih.gov/5057315

Hassan M, Rizk R, Essam H, Abouelnour A. Validation of equations for pleural effusion volume estimation by ultrasonography. J Ultrasound. 2017;20(4):267-71. https://doi.org/10.1007/s40477-017-0266-1 https://pubmed.ncbi.nlm.nih.gov/29204230

Yang PC, Luh KT, Chang DB, Wu HD, Yu CJ, Kuo SH. Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. AJR Am J Roentgenol. 1992;159(1):29-33. https://doi.org/10.2214/ajr.159.1.1609716 https://pubmed.ncbi.nlm.nih.gov/1609716

Shen KR, Bribriesco A, Crabtree T, Denlinger C, Eby J, Eiken P, et al. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. J Thorac Cardiovasc Surg. 2017;153(6):e129-46. https://doi.org/10.1016/j.jtcvs.2017.01.030 https://pubmed.ncbi.nlm.nih.gov/28274565

Kocijančič I, Vidmar K, Ivanovi-Herceg Z. Chest sonography versus lateral decubitus radiography in the diagnosis of small pleural effusions. J Clin Ultrasound. 2003;31(2):69-74. https://doi.org/10.1002/jcu.10141 https://pubmed.ncbi.nlm.nih.gov/12539247

Noppen M. Normal volume and cellular contents of pleural fluid. Paediatr Respir Rev. 2004;5:S201-3. https://doi.org/10.1016/S1526-0542(04)90038-3 https://pubmed.ncbi.nlm.nih.gov/14980271

Nguyen J, Nicholson BT, Patrie JT, Harvey JA. Incidental pleural effusions detected on screening breast MRI. AJR Am J Roentgenol. 2012;199(1):W142-5. https://doi.org/10.2214/AJR.11.7868 https://pubmed.ncbi.nlm.nih.gov/22733923

Kocijancic I, Kocijancic K, Cufer T. Imaging of pleural fluid in healthy individuals. Clin Radiol. 2004;59(9):826-9. https://doi.org/10.1016/j.crad.2004.01.017 https://pubmed.ncbi.nlm.nih.gov/15351248

Kocijancic I, Pusenjak S, Kocijancic K, Vidmar G. Sonographic detection of physiologic pleural fluid in normal pregnant women. J Clin Ultrasound. 2005;33(2):63-6. https://doi.org/10.1002/jcu.20090 https://pubmed.ncbi.nlm.nih.gov/15674834

Kocijancic K. Ultrasonographic forms of pleural space in healthy children. Coll Antropol. 2007;31(4):999-1002. https://pubmed.ncbi.nlm.nih.gov/18217448

Rose G, Siadecki S, Tansek R, Baranchuk N, Saul T. A novel method of assessing for lung sliding using Doppler imaging. Am J Emerg Med. 2017;35(11):1738-42. https://doi.org/10.1016/j.ajem.2017.09.006 https://pubmed.ncbi.nlm.nih.gov/28927949

Wallbridge P, Steinfort D, Tay TR, Irving L, Hew M. Diagnostic chest ultrasound for acute respiratory failure. Respir Med. 2018;141:26-36. https://doi.org/10.1016/j.rmed.2018.06.018 https://pubmed.ncbi.nlm.nih.gov/30053969

Lichtenstein D, Mézière G, Biderman P, Gepner A, Barré O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997;156(5):1640-6. https://doi.org/10.1164/ajrccm.156.5.96-07096 https://pubmed.ncbi.nlm.nih.gov/9372688

Published
2020-01-09
How to Cite
1.
Kocijančič I. The effectiveness of ultrasound investigation of the chest. ZdravVestn [Internet]. 9Jan.2020 [cited 6Apr.2020];89(1-2). Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/2868