Epidermolysis bullosa, wound management and new therapeutic approaches

  • Špela Zemljič-Jokhadar Institute of Biophysics, Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
  • Vlasta Dragoš Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia
  • Mirjana Liovic Medical Center for Molecular Biology, Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
Keywords: ebs, EBS, gene, protein, cell, systemic


Epidermolysis bullosa is a hereditary skin fragility disorder, which is linked to mutations in 18 genes that are expressed in the skin. Today we distinguish 4 main EB types, which include about 30 different disease subtypes with a variety of clinical simptoms. The main types are classified according to the skin layer that is affected: EB simplex linked to the epidermis; junctional EB linked to the basal membrane, and dystrophic EB linked to the dermis. Kindler syndrome is the fourth and very rare type of EB. In all cases, the patient’s skin is very fragile, so the basic clinical symptoms are skin blisters and wounds that heal with difficulty. EB affects patients both physically and psychologically, and the chronic inflammation accompanying the disease often leads to aggressive forms of squamous cell carcinoma. This is a group of rare genetic diseases with an incidence of 1:40000. In Slovenia there are 60 patients with EB. Hereby we present the current standard of care of patients with this still incurable disorder, as well as the newest experimental methodologies aiming at the development of possible genetic, regenerative and pharmacological treatments of EB.


Download data is not yet available.


Fine JD, Johnson LB, Weiner M, Suchindran C. Cause-specific risks of childhood death in inherited epidermolysis bullosa. J Pediatr. 2008;152(2):276-80. https://doi.org/10.1016/j.jpeds.2007.06.039 https://pubmed.ncbi.nlm.nih.gov/18206702

El Hachem M, Zambruno G, Bourdon-Lanoy E, Ciasulli A, Buisson C, Hadj-Rabia S, et al. Multicentre consensus recommendations for skin care in inherited epidermolysis bullosa. Orphanet J Rare Dis. 2014;9(1):76. https://doi.org/10.1186/1750-1172-9-76 https://pubmed.ncbi.nlm.nih.gov/24884811

Has C, Fischer J. Inherited epidermolysis bullosa: new diagnostics and new clinical phenotypes. Exp Dermatol. 2018;28(1146):52. https://doi.org/10.1111/exd.13668 https://pubmed.ncbi.nlm.nih.gov/29679399

Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J Am Acad Dermatol. 2009;61(3):387-402. https://doi.org/10.1016/j.jaad.2009.03.053 https://pubmed.ncbi.nlm.nih.gov/19700011

Corden LD, Mellerio JE, Gratian MJ, Eady RA, Harper JI, Lacour M, et al. Homozygous nonsense mutation in helix 2 of K14 causes severe recessive epidermolysis bullosa simplex. Hum Mutat. 1998;11(4):279-85. https://doi.org/10.1002/(SICI)1098-1004(1998)11:4<279::AID-HUMU5>3.0.CO;2-E https://pubmed.ncbi.nlm.nih.gov/9554744

Ciubotaru D, Bergman R, Baty D, Indelman M, Pfendner E, Petronius D, et al. Epidermolysis bullosa simplex in Israel: clinical and genetic features. Arch Dermatol. 2003;139(4):498-505. https://doi.org/10.1001/archderm.139.4.498 https://pubmed.ncbi.nlm.nih.gov/12707098

Rugg EL, McLean WH, Lane EB, Pitera R, McMillan JR, Dopping-Hepenstal PJ, et al. A functional “knockout” of human keratin 14. Genes Dev. 1994;8(21):2563-73. https://doi.org/10.1101/gad.8.21.2563 https://pubmed.ncbi.nlm.nih.gov/7525407

Jonkman MF, Heeres K, Pas HH, van Luyn MJ, Elema JD, Corden LD, et al. Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex. J Invest Dermatol. 1996;107(5):764-9. https://doi.org/10.1111/1523-1747.ep12365805 https://pubmed.ncbi.nlm.nih.gov/8875963

Batta K, Rugg EL, Wilson NJ, West N, Goodyear H, Lane EB, et al. A keratin 14 ‘knockout’ mutation in recessive epidermolysis bullosa simplex resulting in less severe disease. Br J Dermatol. 2000;143(3):621-7. https://doi.org/10.1111/j.1365-2133.2000.03722.x https://pubmed.ncbi.nlm.nih.gov/10971341

Lanschuetzer CM, Klausegger A, Pohla-Gubo G, Hametner R, Richard G, Uitto J, et al. A novel homozygous nonsense deletion/insertion mutation in the keratin 14 gene (Y248X; 744delC/insAG) causes recessive epidermolysis bullosa simplex type Köbner. Clin Exp Dermatol. 2003;28(1):77-9. https://doi.org/10.1046/j.1365-2230.2003.01218.x https://pubmed.ncbi.nlm.nih.gov/12558637

Has C, Chang YR, Volz A, Hoeping D, Kohlhase J, Bruckner-Tuderman L. Novel keratin 14 mutations in patients with severe recessive epidermolysis bullosa simplex. J Invest Dermatol. 2006;126(8):1912-4. https://doi.org/10.1038/sj.jid.5700312 https://pubmed.ncbi.nlm.nih.gov/16614722

Yiasemides E, Trisnowati N, Su J, Dang N, Klingberg S, Marr P, et al. Clinical heterogeneity in recessive epidermolysis bullosa due to mutations in the keratin 14 gene, KRT14. Clin Exp Dermatol. 2008;33(6):689-97. https://doi.org/10.1111/j.1365-2230.2008.02858.x https://pubmed.ncbi.nlm.nih.gov/18713255

García M, Santiago JL, Terrón A, Hernández-Martín A, Vicente A, Fortuny C, et al. Two novel recessive mutations in KRT14 identified in a cohort of 21 Spanish families with epidermolysis bullosa simplex. Br J Dermatol. 2011;165(3):683-92. https://doi.org/10.1111/j.1365-2133.2011.10428.x https://pubmed.ncbi.nlm.nih.gov/21623745

Fine JD, Bruckner-Tuderman L, Eady RA, Bauer EA, Bauer JW, Has C, et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol. 2014;70(6):1103-26. https://doi.org/10.1016/j.jaad.2014.01.903 https://pubmed.ncbi.nlm.nih.gov/24690439

Fine JD. Epidemiology of Inherited Epidermolysis Bullosa Based on Incidence and Prevalence Estimates From the National Epidermolysis Bullosa Registry. JAMA Dermatol. 2016;152(11):1231-8. https://doi.org/10.1001/jamadermatol.2016.2473 https://pubmed.ncbi.nlm.nih.gov/27463098

Pope E, Lara-Corrales I, Mellerio J, Martinez A, Schultz G, Burrell R, et al. A consensus approach to wound care in epidermolysis bullosa. J Am Acad Dermatol. 2012;67(5):904-17. https://doi.org/10.1016/j.jaad.2012.01.016 https://pubmed.ncbi.nlm.nih.gov/22387035

Denyer J, Pillay E, Clapham J. International Consensus Best Practice Guidelines for Skin and Wound Care in Epidermolysis Bullosa. London: Wounds International; 2017.

Kern JS, Loeckermann S, Fritsch A, Hausser I, Roth W, Magin TM, et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther. 2009;17(9):1605-15. https://doi.org/10.1038/mt.2009.144 https://pubmed.ncbi.nlm.nih.gov/19568221

Conget P, Rodriguez F, Kramer S, Allers C, Simon V, Palisson F, et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy. 2010;12(3):429-31. https://doi.org/10.3109/14653241003587637 https://pubmed.ncbi.nlm.nih.gov/20230217

Petrof G, Martinez-Queipo M, Mellerio JE, Kemp P, McGrath JA. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br J Dermatol. 2013;169(5):1025-33. https://doi.org/10.1111/bjd.12599 https://pubmed.ncbi.nlm.nih.gov/24032424

Petrof G, Lwin SM, Martinez-Queipo M, Abdul-Wahab A, Tso S, Mellerio JE, et al. Potential of Systemic Allogeneic Mesenchymal Stromal Cell Therapy for Children with Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol. 2015;135(9):2319-21. https://doi.org/10.1038/jid.2015.158 https://pubmed.ncbi.nlm.nih.gov/25905587

El-Darouti M, Fawzy M, Amin I, Abdel Hay R, Hegazy R, Gabr H, et al. Treatment of dystrophic epidermolysis bullosa with bone marrow non-hematopoeitic stem cells: a randomized controlled trial. Dermatol Ther (Heidelb). 2016;29(2):96-100. https://doi.org/10.1111/dth.12305 https://pubmed.ncbi.nlm.nih.gov/26439431

Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR, Woodley DT, et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med. 2010;363(7):629-39. https://doi.org/10.1056/NEJMoa0910501 https://pubmed.ncbi.nlm.nih.gov/20818854

Chen M, Kasahara N, Keene DR, Chan L, Hoeffler WK, Finlay D, et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet. 2002;32(4):670-5. https://doi.org/10.1038/ng1041 https://pubmed.ncbi.nlm.nih.gov/12426566

Woodley DT, Krueger GG, Jorgensen CM, Fairley JA, Atha T, Huang Y, et al. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J Invest Dermatol. 2003;121(5):1021-8. https://doi.org/10.1046/j.1523-1747.2003.12571.x https://pubmed.ncbi.nlm.nih.gov/14708601

Titeux M, Pendaries V, Zanta-Boussif MA, Décha A, Pironon N, Tonasso L, et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther. 2010;18(8):1509-18. https://doi.org/10.1038/mt.2010.91 https://pubmed.ncbi.nlm.nih.gov/20485266

Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397-402. https://doi.org/10.1038/nm1504 https://pubmed.ncbi.nlm.nih.gov/17115047

Chen M, O’Toole EA, Muellenhoff M, Medina E, Kasahara N, Woodley DT. Development and characterization of a recombinant truncated type VII collagen “minigene”. Implication for gene therapy of dystrophic epidermolysis bullosa. J Biol Chem. 2000;275(32):24429-35. https://doi.org/10.1074/jbc.M003440200 https://pubmed.ncbi.nlm.nih.gov/10821839

Morgan CP, Allen DS, Millington-Ward S, O’Dwyer GE, Palfi A, Jane Farrar G. A mutation-independent therapeutic strategy for dominant dystrophic epidermolysis bullosa. J Invest Dermatol. 2013;133(12):2793-6. https://doi.org/10.1038/jid.2013.241 https://pubmed.ncbi.nlm.nih.gov/23743647

Zingman LV, Park S, Olson TM, Alekseev AE, Terzic A. Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. Clin Pharmacol Ther. 2007;81(1):99-103. https://doi.org/10.1038/sj.clpt.6100012 https://pubmed.ncbi.nlm.nih.gov/17186006

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829 https://pubmed.ncbi.nlm.nih.gov/22745249

Gorell E, Nguyen N, Lane A, Siprashvili Z. Gene therapy for skin diseases. Cold Spring Harb Perspect Med. 2014;4(4):a015149. https://doi.org/10.1101/cshperspect.a015149 https://pubmed.ncbi.nlm.nih.gov/24692191

Abdul-Wahab A, Qasim W, McGrath JA. Gene therapies for inherited skin disorders. Semin Cutan Med Surg. 2014;33(2):83-90. https://doi.org/10.12788/j.sder.0085 https://pubmed.ncbi.nlm.nih.gov/25085667

Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res. 2017;6(1):6-20. https://doi.org/10.5582/irdr.2017.01005 https://pubmed.ncbi.nlm.nih.gov/28357176

Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551(7680):327-32. https://doi.org/10.1038/nature24487 https://pubmed.ncbi.nlm.nih.gov/29144448

Hovnanian A. Systemic protein therapy for recessive dystrophic epidermolysis bullosa: how far are we from clinical translation? J Invest Dermatol. 2013;133(7):1719-21. https://doi.org/10.1038/jid.2013.137 https://pubmed.ncbi.nlm.nih.gov/23760051

Woodley DT, Wang X, Amir M, Hwang B, Remington J, Hou Y, et al. Intravenously injected recombinant human type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. J Invest Dermatol. 2013;133(7):1910-3. https://doi.org/10.1038/jid.2013.10 https://pubmed.ncbi.nlm.nih.gov/23321924

Wang X, Ghasri P, Amir M, Hwang B, Hou Y, Khalili M, et al. Topical application of recombinant type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure. Mol Ther. 2013;21(7):1335-44. https://doi.org/10.1038/mt.2013.87 https://pubmed.ncbi.nlm.nih.gov/23670575

White JE. Minocycline for dystrophic epidermolysis bullosa. Lancet. 1989;1(8644):966. https://doi.org/10.1016/S0140-6736(89)92555-5 https://pubmed.ncbi.nlm.nih.gov/2565464

Golub LM, Wolff M, Lee HM, McNamara TF, Ramamurthy NS, Zambon J, et al. Further evidence that tetracyclines inhibit collagenase activity in human crevicular fluid and from other mammalian sources. J Periodontal Res. 1985;20(1):12-23. https://doi.org/10.1111/j.1600-0765.1985.tb00405.x https://pubmed.ncbi.nlm.nih.gov/2983061

del-Río E. Prevention of blisters in dystrophic recessive epidermolysis bullosa with cyclosporine. J Am Acad Dermatol. 1993;29(6):1038-9. https://doi.org/10.1016/S0190-9622(08)82040-3 https://pubmed.ncbi.nlm.nih.gov/8245240

Gubinelli E, Angelo C, Pacifico V. A case of dystrophic epidermolysis bullosa improved with etanercept for concomitant psoriatic arthritis. Am J Clin Dermatol. 2010;11:53-4. https://doi.org/10.2165/1153427-S0-000000000-00000 https://pubmed.ncbi.nlm.nih.gov/20586512

Fritsch A, Loeckermann S, Kern JS, Braun A, Bösl MR, Bley TA, et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest. 2008;118(5):1669-79. https://doi.org/10.1172/JCI34292 https://pubmed.ncbi.nlm.nih.gov/18382769

Tamai K, Yamazaki T, Chino T, Ishii M, Otsuru S, Kikuchi Y, et al. PDGFRalpha-positive cells in bone marrow are mobilized by high mobility group box 1 (HMGB1) to regenerate injured epithelia. Proc Natl Acad Sci USA. 2011;108(16):6609-14. https://doi.org/10.1073/pnas.1016753108 https://pubmed.ncbi.nlm.nih.gov/21464317

Liovic M, Ozir M, Zavec AB, Peternel S, Komel R, Zupancic T. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells. Microb Cell Fact. 2012;11(1):67. https://doi.org/10.1186/1475-2859-11-67 https://pubmed.ncbi.nlm.nih.gov/22624805

Zavec AB, Ota A, Zupancic T, Komel R, Ulrih NP, Liovic M. Archaeosomes can efficiently deliver different types of cargo into epithelial cells grown in vitro. J Biotechnol. 2014;192 Pt A:130-5. https://doi.org/10.1016/j.jbiotec.2014.09.015 https://pubmed.ncbi.nlm.nih.gov/25270023

Zemljič Jokhadar Š, Klančnik U, Grundner M, Švelc Kebe T, Vrhovec Hartman S, Liović M, et al. GPMVs in variable physiological conditions: could they be used for therapy delivery? BMC Biophys. 2018;11(1):1. https://doi.org/10.1186/s13628-017-0041-x https://pubmed.ncbi.nlm.nih.gov/29308185

Zupancic T, Sersa G, Törmä H, Lane EB, Herrmann H, Komel R, et al. Keratin gene mutations influence the keratinocyte response to DNA damage and cytokine induced apoptosis. Arch Dermatol Res. 2017;309(7):587-93. https://doi.org/10.1007/s00403-017-1757-9 https://pubmed.ncbi.nlm.nih.gov/28647894

Kolundzic N, Khurana P, Hobbs C, Rogar M, Ropret S, Törmä H, et al. Induced pluripotent stem cell (iPSC) line from an epidermolysis bullosa simplex patient heterozygous for keratin 5 E475G mutation and with the Dowling Meara phenotype. Stem Cell Res (Amst). 2019;37:101424. https://doi.org/10.1016/j.scr.2019.101424 https://pubmed.ncbi.nlm.nih.gov/30933721

How to Cite
Zemljič-Jokhadar Špela, Dragoš V, Liovic M. Epidermolysis bullosa, wound management and new therapeutic approaches. ZdravVestn [Internet]. 10Mar.2020 [cited 6Apr.2020];89(1-2):107-1. Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/2937
Professional Article