Comparison of ultrasound measurement of vena cava inferior diameter and measurement of body composition using bioelectrical impedance for the assessment of fluid status in newborn infants

Authors

  • Jerneja Bizjak Kolšek General Hospital dr. Franc Derganc Nova Gorica, Šempeter pri Gorici, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
  • Darja Paro-Panjan Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Department of Neonatology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
  • Jakob Peterlin Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
  • Jana Lozar Krivec Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Department of Neonatology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia

DOI:

https://doi.org/10.6016/ZdravVestn.3501

Keywords:

newborn, organism hydration status, ultrasonographic imaging, vena cava inferior, electric impedance

Abstract

Background: Neonatal medical conditions often disrupt the physiological processes that regulate fluid balance, so assessing fluid status in sick neonates is important for clinical management. In clinical practice we use clinical signs, which, however, on their own, do not provide a reliable assessment of fluid status. We aimed to compare two methods: i) diameters and collapsibility index of vena cava inferior (VCI) measured by ultrasonography and ii) analysis of body composition by bioelectrical impedance (BIA) and to evaluate their relation to changes in body mass.

Methods: In a cohort-prospective clinical trial we included 27 neonates aged 1–7 days with various pathologies. Ultrasound measurements of VCI transversely and longitudinally, measurements of body composition by BIA and measurements of body mass were performed in each subject at least three times with an interval of 24–72 hours. Simultaneous measurements of the same subject were then analysed and evaluated.

Results: The average proportion of total body water (TBW) decreased in the first days after birth, from 80.3% (Day 1) to 73.1% (Day 8) (p = 0.006). The decrease in the average proportion of extracellular water (ECW) in the first days after birth was not statistically significant. The association between ECW and body mass over time was statistically significant (p < 0.001). The association between transversely measured large VCI diameter during inspiration, body mass, and ECW was statistically significant (p = 0.024). No statistically significant association with ECW or body mass was proven for the other ultrasound-measured variables.

Conclusions: By measuring body composition with BIA, we confirmed the reduction of the average proportions of TBW after birth and the association between body mass, ECW, and transversely measured maximal diameter of VCI during inspiration. BIA is an appropriate method for monitoring fluid status in a newborn. Additional research on a larger number of subjects is needed to define the significance of VCI measurements for assessing fluid status.

Downloads

Download data is not yet available.

References

1. Jain A. Body fluid composition. Pediatr Rev. 2015;36(4):141-50.
DOI: 10.1542/pir.36-4-141
PMID: 25834218

2. O’Brien F, Walker IA. Fluid homeostasis in the neonate. Paediatr Anaesth. 2014;24(1):49-59.
DOI: 10.1111/pan.12326
PMID: 24299660

3. Tobias A, Ballard BD, Mohiuddin SS. Physiology, Water Balance. Treasure Island (FL): StatPearls Publishing; 2024. [cited 2024 Feb 28].

4. Kim CR, Katheria AC, Mercer JS, Stonestreet BS. Fluid Distribution in the Fetus and Neonate. In: Polin RA, Abman SH, Rowitch DH, Benitz WE, Fox WW, eds. Fetal and Neonatal Physiology. 5th ed. Philadelphia: Elsevier; 2017. pp. 1081-9.
DOI: 10.1016/B978-0-323-35214-7.00112-8

5. Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28(2):169-81.
DOI: 10.1542/peds.28.2.169
PMID: 13702099

6. Nosan Gregor. Tekočinsko in elektrolitsko ravnovesje novorojenčka. In: Paro-Panjan D. , urHemodinamsko, tekočinsko in elektrolitsko ravnovesje pri novorojenčku : [učbenik]. Ljubljana: Klinični oddelek za neonatologijo, Pediatrična klinika, UKC; 2016.

7. Lindower JB. Water balance in the fetus and neonate. Semin Fetal Neonatal Med. 2017;22(2):71-5.
DOI: 10.1016/j.siny.2017.01.002
PMID: 28153467

8. Kieliszczyk J, Baranowski W, Kosiak W. Usefulness of ultrasound examination in the evaluation of a neonate’s body fluid status. J Ultrason. 2016;16(65):125-34.
DOI: 10.15557/JoU.2016.0014
PMID: 27446597

9. Azhibekov T, Soleymani S, Lee BH, Noori S, Seri I. Hemodynamic monitoring of the critically ill neonate: an eye on the future. Semin Fetal Neonatal Med. 2015;20(4):246-54.
DOI: 10.1016/j.siny.2015.03.003
PMID: 25841985

10. Jarosz-Lesz A, Michalik K, Maruniak-Chudek I. Baseline Diameters of Inferior Vena Cava and Abdominal Aorta Measured by Ultrasonography in Healthy Term Neonates During Early Neonatal Adaptation Period. J Ultrasound Med. 2018;37(1):181-9.
DOI: 10.1002/jum.14324
PMID: 28708286

11. Di Nicolò P, Tavazzi G, Nannoni L, Corradi F. Inferior Vena Cava Ultrasonography for Volume Status Evaluation: An Intriguing Promise Never Fulfilled. J Clin Med. 2023;12(6):2217.
DOI: 10.3390/jcm12062217
PMID: 36983218

12. Mugloo MM, Malik S, Akhtar R. Echocardiographic Inferior Vena Cava Measurement As An Alternative to Central Venous Pressure Measurement in Neonates. Indian J Pediatr. 2017;84(10):751-6.
DOI: 10.1007/s12098-017-2382-5
PMID: 28634780

13. Sato Y, Kawataki M, Hirakawa A, Toyoshima K, Kato T, Itani Y, et al. The diameter of the inferior vena cava provides a noninvasive way of calculating central venous pressure in neonates. Indian J Pediatr. 1992;102(6):e241-6.
DOI: 10.1111/apa.12247
PMID: 23586684

14. Lukaski HC, Vega Diaz N, Talluri A, Nescolarde L. Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance. Nutrients. 2019;11(4):809.
DOI: 10.3390/nu11040809
PMID: 30974817

15. Dasgupta I, Keane D, Lindley E, Shaheen I, Tyerman K, Schaefer F, et al. Validating the use of bioimpedance spectroscopy for assessment of fluid status in children. Pediatr Nephrol. 2018;33(9):1601-7.
DOI: 10.1007/s00467-018-3971-x
PMID: 29869117

16. Lingwood BE. Bioelectrical impedance analysis for assessment of fluid status and body composition in neonates—the good, the bad and the unknown. Eur J Clin Nutr. 2013;67(1):S28-33.
DOI: 10.1038/ejcn.2012.162
PMID: 23299869

17. Peterlin J, Blagus R, Kejžar N. Goodness-of-fit tests for functional form of Linear Mixed effects Models. New York: ArXiv; 2019[cited 2021 Aug 25].

18. Demidenko E. Mixed models. 2nd ed. New Yersey: Wiley; 2013.

19. Piccoli A. Bioelectric impedance measurement for fluid status assessment. Contrib Nephrol. 2010;164:143-52.
DOI: 10.1159/000313727
PMID: 20428000

20. Rodríguez G, Ventura P, Samper MP, Moreno L, Sarría A, Pérez-González JM. Changes in body composition during the initial hours of life in breast-fed healthy term newborns. Biol Neonate. 2000;77(1):12-6.
DOI: 10.1159/000014189
PMID: 10658825

21. Schefold JC, Storm C, Bercker S, Pschowski R, Oppert M, Krüger A, et al. Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med. 2010;38(5):632-7.
DOI: 10.1016/j.jemermed.2007.11.027
PMID: 18385005

22. Lyon M, Blaivas M, Brannam L. Sonographic measurement of the inferior vena cava as a marker of blood loss. Am J Emerg Med. 2005;23(1):45-50.
DOI: 10.1016/j.ajem.2004.01.004
PMID: 15672337

23. Ciozda W, Kedan I, Kehl DW, Zimmer R, Khandwalla R, Kimchi A. The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure. Cardiovasc Ultrasound. 2016;14(1):33.
DOI: 10.1186/s12947-016-0076-1
PMID: 27542597

24. Ommen SR, Nishimura RA, Hurrell DG, Klarich KW. Assessment of right atrial pressure with 2-dimensional and Doppler echocardiography: a simultaneous catheterization and echocardiographic study. Mayo Clin Proc. 2000;75(1):24-9.
DOI: 10.4065/75.1.24
PMID: 10630753

25. Vaish H, Kumar V, Anand R, Chhapola V, Kanwal SK. The Correlation Between Inferior Vena Cava Diameter Measured by Ultrasonography and Central Venous Pressure. Indian J Pediatr. 2017;84(10):757-62.
DOI: 10.1007/s12098-017-2433-y
PMID: 28868586

26. Hruda J, Rothuis EG, van Elburg RM, Sobotka-Plojhar MA, Fetter WP. Echocardiographic assessment of preload conditions does not help at the neonatal intensive care unit. Am J Perinatol. 2003;20(6):297-303.
DOI: 10.1055/s-2003-42771
PMID: 14528399

27. Natori H, Tamaki S, Kira S. Ultrasonographic evaluation of ventilatory effect on inferior vena caval configuration. Am Rev Respir Dis. 1979;120(2):421-7.
PMID: 475160

28. Gullace G, Savoia MT. Echocardiographic assessment of the inferior vena cava wall motion for studies of right heart dynamics and function. Clin Cardiol. 1984;7(7):393-404.
DOI: 10.1002/clc.4960070704
PMID: 6744695

29. Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH. Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol. 1984;53(4):579-85.
DOI: 10.1016/0002-9149(84)90034-1
PMID: 6695787

30. Goei R, Ronnen HR, Kessels AH, Kragten JA. Right heart failure: diagnosis via ultrasonography of the inferior vena cava and hepatic veins. Rofo. 1997;166(1):36-9.
DOI: 10.1055/s-2007-1015374
PMID: 9072102

31. Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996;93(6):1160-9.
DOI: 10.1161/01.CIR.93.6.1160
PMID: 8653837

32. Babaie S, Behzad A, Mohammadpour M, Reisi M. A Comparison between the Bedside Sonographic Measurements of the Inferior Vena Cava Indices and the Central Venous Pressure While Assessing the Decreased Intravascular Volume in Children. Adv Biomed Res. 2018;7(1):97.
DOI: 10.4103/abr.abr_213_17
PMID: 30050885

Published

2024-08-31

Issue

Section

Original article

How to Cite

1.
Comparison of ultrasound measurement of vena cava inferior diameter and measurement of body composition using bioelectrical impedance for the assessment of fluid status in newborn infants. ZdravVestn [Internet]. 2024 Aug. 31 [cited 2024 Sep. 27];93(7-8):236-44. Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/3501

Most read articles by the same author(s)