Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 1: A short overview

  • Bojan Božič Inštitut za biofiziko Medicinska fakulteta Univerza v Ljubljani Vrazov trg 2 1000 Ljubljana
  • Luka Kristanc Inštitut za biofiziko Medicinska fakulteta Univerza v Ljubljani Vrazov trg 2 1000 Ljubljana
  • Gregor Gomišček Inštitut za biofiziko Medicinska fakulteta Univerza v Ljubljani Vrazov trg 2 1000 Ljubljana
Keywords: imaging, NMR, angiography, diffusion, spectroscopy

Abstract

In the course of their work, the physicians are more and more frequently confronted with various imaging methods. An adequate knowledge of the basic principles of these methods allows them not only to communicate more successfully with radiologists and other experts in the field, but also enables them to make appropriate choice of diagnostic measures and to use diagnostic devices effectively. In this paper, the basic imaging principles and some applications of the magnetic resonance in medicine, i.e., magnetic resonance imaging (MRI), angiographic methods, diffusion-weighted MRI, functional MRI and magnetic resonance spectroscopy, will be briefly presented.

Downloads

Download data is not yet available.

References

Westbrook C, Kaut Roth C, Talbot J. MRI in Practice, 4th Edition. New Jersey, ZDA: Wiley-Blackwell; 2011.

Juvan-Žavbi M. Slikovne diagnostične metode za zamejitev bolezni v trebuhu pri bolnikih s pljučnim rakom. Zdrav Vestn 2007; 76: 415–21.

Šmid LM, Bresjanac M. Slikanje živčevja pri nevrodegenerativnih demencah. Zdrav Vestn 2008; 77: II-43–50.

Demšar F, Jevtić V, Bačić GG. Slikanje z magnetno resonanco. Ljubljana: Litera picta; 1996.

Stark DD, Bradley WG. Magnetic resonance imaging. St. Louis (MO): C.V. Mosby; 1988.

Božič B, Kristanc L, Gomišček G. Magnetna resonanca, pojav z velikim medicinskim potencialom, a zapletenim fizikalnim ozadjem – 3. del: osnove slikanja z magnetno resonanco. Zdrav Vestn. In press 2013.

Haacke EM, Brown RF, Thompson M, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: J. Wiley & Sons; 1999.

Fukushima E, Roeder SBW. Experimental pulse NMR. Reading (MA): Addison-Wesley; 1981.

Damadian RV. Tumor detection by nuclear magnetic resonance. Science 1971; 171: 1151–3.

Božič B, Kristanc L, Gomišček G. Magnetna resonanca, pojav z velikim medicinskim potencialom, a zapletenim fizikalnim ozadjem – 2. del: osnove magnetne resonance. Zdrav Vestn. In press 2013.

Lauterbur PC. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 1973; 242: 190–1.

Janež J, Stražar P, Vengust R. Vpliv vertebroplastike na degeneracijo sosednjih medvretenčnih ploščic. Zdrav Vestn 2008; 77: 125–8.

Hartung MP, Grist TM, François CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson 2011; 13: 19–29.

Eastwood JD, Lev MH, Wintermark M, Fitzek C, Barboriak DP, Delong DM, et al. Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. Am J Neuroradiol 2003; 24: 1869–75.

Lavrič A, Švigelj V, Prestor B, Hawlina M. Homonimna hemianopsija – prikaz primera. Zdrav Vestn 2007; 76: 165–70.

Deck MD, Henschke C, Lee BC, Zimmerman RD, Hyman RA, Edwards J, et al. Computed tomography versus magnetic resonance imaging of the brain. A collaborative interinstitutional study. Clin Imaging 1989; 13: 2–15.

FDA Drug Safety Communication: New warnings required on use of gadolinium-based contrast agents. Enhanced screening recommended to detect kidney dysfunction. U.S. Food and Drug Administration 2010. Dosegljivo s spletne stani: http://www.fiercepharma.com/press-releases/fda-new-warnings-required-use-gadolinium-based-contrast-agents-0

Nakiri GS, Santos AC, Abud TG, Aragon DC, Colli BO, Abud DG. A comparison between magnetic resonance angiography at 3 teslas (time-of-flight and contrast-enhanced) and flat-panel digital subtraction angiography in the assessment of embolized brain aneurysms. Clinics (Sao Paulo) 2011; 66: 641–8.

Barlinn K, Alexandrov AV. Vascular imaging in stroke: comparative analysis. Neurotherapeutics 2011; 8: 340–8.

Lin MD, Jackson EF. Applications of imaging technology in radiation research. Radiat Res 2012; 177: 387–97.

Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT. Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 2007; 8: 63–74.

Jones DK, ed. Diffusion MRI: theory, methods, and applications. London: Oxford University Press; 2010.

Mori S. Introduction to diffusion tensor imaging. 1st ed. Elsevier Science; 2007.

Filler A. MR neurography and diffusion tensor imaging: origins, history & clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000 patient study group. Neurosurgery 2009; 65: 29–43.

Manenti G, Carlani M, Mancino S. Diffusion tensor magnetic resonance imaging of prostate cancer. Invest Radiol 2007; 42: 412–9.

Vaillancourt DE, Spraker MB, Prodoehl J, Abraham I, Corcos DM, Zhou XJ, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009; 72(16): 1378–84.

Stroman PW. Essentials of Functional MRI. Boca Raton (FL): CRC Press; 2011.

Frahm J, Merboldt KD, Hanicke W. Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 1993; 29: 139–44.

Žele T, Matos B, Prestor B, Knific J, Bajrović FF. Računalniško podprto predoperativno interaktivno 3-D načrtovanje operativnega posega v nevrokirurgiji. Zdrav Vestn 2006; 75: 703–11.

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675–9.

Gomiscek G, Beisteiner R, Hittmair K, Mueller E, Moser E. A possible role of in-flow effects in functional MR-imaging. Magma 1993; 1: 109–13.

Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med 1992; 25: 390–7.

Matson GB, Weiner MW. Spectroscopy, Chapter 15. In: Magnetic resonance imaging. Stark DD, Bradley WG, eds. St. Louis: Mosby Year Book; 1992.

Frahm J, Merboldt KD, Hanicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987; 72: 502–8.

Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 1987; 508: 333–48.

Ordidge RJ, Connelly A, Lohman JAB. Image-selected in vivo spectroscopy (ISIS): a new technique for spatially selective NMR spectroscopy. J Magn Reson 1986; 66: 283–94.

Bottomley PA, Foster TB, Darrow RD. Depth-resolved surface coil spectroscopy (DRESS) for in vivo 1H, 31P and 13C NMR. J Magn Reson 1984; 59: 338–42.

Larsen RG, Befroy DE, Kent-Braun JA. High-intensity interval training increases in vivo oxidative capacity with no effect on Pi->ATP rate in resting human muscle. Am J Physiol Regul Integr Comp Physiol 2012; 61: 2669–78.

Silva AK, Silva EL, Egito ES, Carrico AS. Safety concerns related to magnetic field exposure. Radiat Environ Biophys 2006; 45: 245–52.

Budinger TF, Fischer H, Hentschel D, Reinfelder HE, Schmitt F. Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 1991; 15: 909–14.

How to Cite
1.
Božič B, Kristanc L, Gomišček G. Magnetic resonance, a phenomenon with a great potential in medicine, but with a complex physical background – Part 1: A short overview. ZdravVestn [Internet]. 1 [cited 19Oct.2019];82(11). Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/991
Section
Review