Human breast cancer cell lines

Authors

  • Kristijan Skok Institute of biomedical sciences, Faculty of medicine, University of Maribor, Maribor, Slovenia http://orcid.org/0000-0002-3027-8164
  • Uroš Maver Institute of biomedical sciences, Faculty of medicine, University of Maribor, Maribor, Slovenia
  • Lidija Gradišnik Institute of biomedical sciences, Faculty of medicine, University of Maribor, Maribor, Slovenia
  • Rajko Kavalar Department of Patology, University Medical Centre Maribor, Maribor, Slovenia
  • Monika Sobočan Division of Gyneacology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia
  • Iztok Takač Division of Gyneacology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia

DOI:

https://doi.org/10.6016/ZdravVestn.2842

Keywords:

breast cancer cell lines, breast cancer, triple negative breast cancer, in vitro cell lines, cell culture

Abstract

Breast cancer is the second most common cancer worldwide and ranked first in incidence in women living either in developed or developing countries. It is ranked as the fifth common cause of cancer death. Annually, there are 1310 new cases of breast cancer in Slovenia. There are many types of breast cancer that we can differentiate based on their histopathology and molecular i.e. intrinsic properties. Breast cancer cell lines play a significant role in breast cancer research and analysis of different subtypes. The first breast cancer cell line was established in 1958 and named BT-20 (1958, Lasfargues in Ozzello). In recent years the number of cell lines has drastically increased. Commonly used breast cancer cell lines are MCF7, T47D and MDAMB231. The MCF7 and T47D cell lines are luminal A type (ER+/PR+/HER2-), whereas MDAMB231 is triple negative (ER-/PR-/HER2-). There are many inconsistencies in nomenclature and culturing of cell lines. Also, questionable is the consistency and repeatability of research in different laboratories or conditions, where cell lines could develop different traits (e.g. dedifferentiation, change of phenotype, mutations). There are examples of different categorisation into unique subtypes of the same cell lines in literature, based on different molecular and morphological descriptions. Therefore, the authors believe that there is a need for a literature review of the currently available information. The authors focused on breast cancer cell lines, their nomenclature, differentiation, culturing and usefulness.

Downloads

Download data is not yet available.

References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.
DOI: 10.1002/ijc.29210
PMID: 25220842

2. Zadnik V, Primic Zakelj M, Lokar K, Jarm K, Ivanus U, Zagar T. Cancer burden in slovenia with the time trends analysis. Radiol Oncol. 2017;51(1):47-55.
DOI: 10.1515/raon-2017-0008
PMID: 28265232

3. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol. 2010;28(1):92-8.
DOI: 10.1200/JCO.2008.19.9844
PMID: 19933921

4. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23(29):7350-60.
DOI: 10.1200/JCO.2005.03.3845
PMID: 16145060

5. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8(16):3131-41.
DOI: 10.7150/jca.18457
PMID: 29158785

6. Cope LM, Fackler MJ, Lopez-Bujanda Z, Wolff AC, Visvanathan K, Gray JW, et al. Do breast cancer cell lines provide a relevant model of the patient tumor methylome? PLoS One. 2014;9(8):e105545.
DOI: 10.1371/journal.pone.0105545
PMID: 25157401

7. Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32(1-2):35-48.
DOI: doi: 10.3233/BD-2010-0307
PMID: 21778573

8. Ellis IO, Collins L, Ichihara S, MacGrogan G. Invasive carcinoma of no special type. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Vijver MJ. WHO classification of Tumours of the Breast. Lyon: IARC; 2012.

9. Lakhani SR, Rakha E, Simpson PT. Special subtypes. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Vijver MJ. WHO classification of tumours of the breast. Lyon: IARC; 2012.

10. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52.
DOI: 10.1038/35021093
PMID: 10963602

11. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869-74.
DOI: 10.1073/pnas.191367098
PMID: 11553815

12. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418-23.
DOI: 10.1073/pnas.0932692100
PMID: 12829800

13. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736-50.
DOI: 10.1093/jnci/djp082
PMID: 19436038

14. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 2008;68(9):3108-14.
DOI: 10.1158/0008-5472.CAN-07-5644
PMID: 18451135

15. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929-43.
PMID: 26693050

16. Hole S, Pedersen AM, Hansen SK, Lundqvist J, Yde CW, Lykkesfeldt AE. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol. 2015;46(4):1481-90.
DOI: 10.3892/ijo.2015.2850
PMID: 25625755

17. Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech. 2017;10(4):359-71.
DOI: 10.1242/dmm.028274
PMID: 28381598

18. Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215.
DOI: 10.1186/bcr2889
PMID: 21884641

19. Greely HT, Cho MK. The Henrietta Lacks legacy grows. EMBO Rep. 2013;14(10):849.
DOI: 10.1038/embor.2013.148
PMID: 24030280

20. Lasfargues EY, Ozzello L. Cultivation of human breast carcinomas. J Natl Cancer Inst. 1958;21(6):1131-47.
PMID: 13611537

21. Amadori D, Bertoni L, Flamigni A, Savini S, De Giovanni C, Casanova S, et al. Establishment and characterization of a new cell line from primary human breast carcinoma. Breast Cancer Res Treat. 1993;28(3):251-60.
DOI: 10.1007/BF00666586
PMID: 8018954

22. Gazdar AF, Kurvari V, Virmani A, Gollahon L, Sakaguchi M, Westerfield M, et al. Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer. 1998;78(6):766-74.
DOI: 10.1002/(SICI)1097-0215(19981209)78:6<766::AID-IJC15>3.0.CO;2-L
PMID: 9833771

23. Lee AV, Oesterreich S, Davidson NE. MCF-7 cells—changing the course of breast cancer research and care for 45 years. J Natl Cancer Inst. 2015;107(7):djv073-073.
DOI: 10.1093/jnci/djv073
PMID: 25828948

24. International Cell Line Authentication CommitteeNaming a Cell Line - ver. 1.6. 2015[cited 2018 Apr 18]. Available from: http://iclac.org/wp-content/uploads/Naming-a-Cell-Line_v1_6.pdf.

25. Riaz M, van Jaarsveld MT, Hollestelle A, Prager-van der Smissen WJ, Heine AA, Boersma AW, et al. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res. 2013;15(2):R33-33.
DOI: 10.1186/bcr3415
PMID: 23601657

26. Waks AG, Winer EP. Breast Cancer Treatment: A Review. JAMA. 2019;321(3):288-300.
DOI: 10.1001/jama.2018.19323
PMID: 30667505

27. Bertucci F, Borie N, Ginestier C, Groulet A, Charafe-Jauffret E, Adélaide J, et al. Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene. 2004;23(14):2564-75.
DOI: 10.1038/sj.onc.1207361
PMID: 14743203

28. Sahlberg KK, Hongisto V, Edgren H, Mäkelä R, Hellström K, Due EU, et al. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells. Mol Oncol. 2013;7(3):392-401.
DOI: 10.1016/j.molonc.2012.10.012
PMID: 23253899

29. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515-27.
DOI: 10.1016/j.ccr.2006.10.008
PMID: 17157791

30. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4(7):e6146.
DOI: 10.1371/journal.pone.0006146
PMID: 19582160

31. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adélaide J, Cervera N, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 2006;25(15):2273-84.
DOI: 10.1038/sj.onc.1209254
PMID: 16288205

32. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12):a005058.
DOI: 10.1101/cshperspect.a005058
PMID: 21917992

33. Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J Cancer. 2016;7(10):1281-94.
DOI: 10.7150/jca.13141
PMID: 27390604

34. Wang B, Elledge SJ. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci USA. 2007;104(52):20759-63.
DOI: 10.1073/pnas.0710061104
PMID: 18077395

35. Gradisnik L, Trapecar M, Rupnik MS, Velnar T. HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation. Wien Klin Wochenschr. 2015;127(S5):S204-9.
DOI: 10.1007/s00508-015-0771-1
PMID: 25821058

36. Naranda J, Gradišnik L, Gorenjak M, Vogrin M, Maver U. Isolation and characterization of human articular chondrocytes from surgical waste after total knee arthroplasty (TKA). PeerJ. 2017;5:e3079.
DOI: 10.7717/peerj.3079
PMID: 28344902

37. Lacroix M, Haibe-Kains B, Hennuy B, Laes JF, Lallemand F, Gonze I, et al. Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two breast cancer cell lines exhibiting highly different phenotypes. Oncol Rep. 2004;12(4):701-7.
DOI: 10.3892/or.12.4.701
PMID: 15375488

38. Hiscox S, Baruha B, Smith C, Bellerby R, Goddard L, Jordan N, et al. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer. 2012;12(1):458.
DOI: 10.1186/1471-2407-12-458
PMID: 23039365

39. Larramendy ML, Lushnikova T, Björkqvist AM, Wistuba II, Virmani AK, Shivapurkar N, et al. Comparative genomic hybridization reveals complex genetic changes in primary breast cancer tumors and their cell lines. Cancer Genet Cytogenet. 2000;119(2):132-8.
DOI: 10.1016/S0165-4608(99)00226-5
PMID: 10867149

40. Nestor CE, Ottaviano R, Reinhardt D, Cruickshanks HA, Mjoseng HK, McPherson RC, et al. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems. Genome Biol. 2015;16(1):11.
DOI: 10.1186/s13059-014-0576-y
PMID: 25648825

41. Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene. 2002;21(35):5462-82.
DOI: 10.1038/sj.onc.1205606
PMID: 12154408

42. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(14):910-9.
DOI: 10.5114/aoms.2016.63743
PMID: 30002710

43. Hsieh C-H, Chen Y-D, Huang S-F, Wang H-M, Wu M-H. The effect of primary cancer cell culture models on the results of drug chemosensitivity assays: the application of perfusion microbioreactor system as cell culture vessel. Biomed Res Int. 2015;2015:470283.
DOI: 10.1155/2015/470283
PMID: 25654105

44. Bulysheva AA, Bowlin GL, Petrova SP, Yeudall WA. Enhanced chemoresistance of squamous carcinoma cells grown in 3D cryogenic electrospun scaffolds. Biomed Mater. 2013;8(5):055009.
DOI: 10.1088/1748-6041/8/5/055009
PMID: 24057893

45. Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, et al. Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res. 2014;74(8):2160-70.
DOI: 10.1158/0008-5472.CAN-13-3392
PMID: 24737128

46. Christgen M, Lehmann U. MDA-MB-435: the questionable use of a melanoma cell line as a model for human breast cancer is ongoing. Cancer Biol Ther. 2007;6(9):1355-7.
DOI: 10.4161/cbt.6.9.4624
PMID: 17786032

47. Dvořánková B, Szabo P, Lacina L, Kodet O, Matoušková E, Smetana K. Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell Biol. 2012;137(5):679-85.
DOI: 10.1007/s00418-012-0918-3
PMID: 22270320

48. Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and ANIMAL MODELS: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci. 2018;19(1):181.
DOI: 10.3390/ijms19010181
PMID: 29346265

49. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003;100(18):10393-8.
DOI: 10.1073/pnas.1732912100
PMID: 12917485

50. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 2006;355(6):560-9.
DOI: 10.1056/NEJMoa052933
PMID: 16899776

51. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-67.
DOI: 10.1172/JCI45014
PMID: 21633166

52. Hynds RE, Vladimirou E, Janes SM. The secret lives of cancer cell lines. Dis Model Mech. 2018;11(11):dmm037366.
DOI: 10.1242/dmm.037366
PMID: 30459183

53. Korch C, Spillman MA, Jackson TA, Jacobsen BM, Murphy SK, Lessey BA, et al. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol Oncol. 2012;127(1):241-8.
DOI: 10.1016/j.ygyno.2012.06.017
PMID: 22710073

54. Gillet J-P, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105(7):452-8.
DOI: 10.1093/jnci/djt007
PMID: 23434901

55. Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377-84.
DOI: 10.1158/0008-5472.CAN-13-2971
PMID: 24717177

56. Fusenig NE, Capes-Davis A, Bianchini F, Sundell S, Lichter P. The need for a worldwide consensus for cell line authentication: experience implementing a mandatory requirement at the International Journal of Cancer. PLoS Biol. 2017;15(4):e2001438.
DOI: 10.1371/journal.pbio.2001438
PMID: 28414712

Published

2019-10-31

How to Cite

1.
Human breast cancer cell lines. ZdravVestn [Internet]. 2019 Oct. 31 [cited 2024 Nov. 2];88(9-10):427-43. Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/2842