Acute traumatic spinal cord injury
Pathophysiology and modern treatment concepts
DOI:
https://doi.org/10.6016/ZdravVestn.2911Keywords:
spinal cord, injury, pathophysiology, treatment, decompressionAbstract
Traumatic spinal cord injury (tSCI) is a devastating event with a huge impact on modern society. Despite recent advances in different therapeutic strategies in preclinical models, the transition of these approaches into the clinical setting remains elusive. However, recent studies have shown that urgent spinal cord decompression and adequate spinal cord perfusion have a positive effect on neurologic recovery. Additional treatment strategies that try to address the complexity of tSCI are under clinical investigation, based on an in-depth understanding of pathophysiological processes involved in tSCI. Therefore, in this review we present a comprehensive understanding of pathophysiological processes involved in tSCI with emerging and evolving concepts of modern treatment.
Downloads
References
1. Branco F, Cardenas DD, Svircev JN. Spinal cord injury: a comprehensive review. Phys Med Rehabil Clin N Am. 2007;18(4):651-79.
DOI: 10.1016/j.pmr.2007.07.010
PMID: 17967359
2. Post MW, van Leeuwen CM. Psychosocial issues in spinal cord injury: a review. Spinal Cord. 2012;50(5):382-9.
DOI: 10.1038/sc.2011.182
PMID: 22270190
3. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 2014;6:309-31.
DOI: 10.2147/CLEP.S68889
PMID: 25278785
4. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26(24):S2-12.
DOI: 10.1097/00007632-200112151-00002
PMID: 11805601
5. Pirouzmand F. Epidemiological trends of spine and spinal cord injuries in the largest Canadian adult trauma center from 1986 to 2006. J Neurosurg Spine. 2010;12(2):131-40.
DOI: 10.3171/2009.9.SPINE0943
PMID: 20121346
6. Chamberlain JD, Deriaz O, Hund-Georgiadis M, Meier S, Scheel-Sailer A, Schubert M, et al. Epidemiology and contemporary risk profile of traumatic spinal cord injury in Switzerland. Inj Epidemiol. 2015;2(1):28.
DOI: 10.1186/s40621-015-0061-4
PMID: 26550554
7. Jabbour P, Fehlings M, Vaccaro AR, Harrop JS. Traumatic spine injuries in the geriatric population. Neurosurg Focus. 2008;25(5):E16.
DOI: 10.3171/FOC.2008.25.11.E16
PMID: 19067564
8. McCaughey EJ, Purcell M, McLean AN, Fraser MH, Bewick A, Borotkanics RJ, et al. Changing demographics of spinal cord injury over a 20-year period: a longitudinal population-based study in Scotland. Spinal Cord. 2016;54(4):270-6.
DOI: 10.1038/sc.2015.167
PMID: 26458974
9. Ahuja CS, Wilson JR, Nori S, Kotter MR, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3(1):17018.
DOI: 10.1038/nrdp.2017.18
PMID: 28447605
10. Fehlings MG, Sekhon L. Cellular, ionic and biomolecular mechanisms of the injury process. In: Benzel E, Tator CH. Contemporary management of spinal cord injury: from impact to rehabilitation. Chicago (IL): American Association of Neurological Surgeons; 2000. pp. 33-50.
11. Tator CH. Pathophysiology and pathology of spinal cord injury. In: Wilkins RH, Rengachary SS. Neurosurgery. 2nd ed.. New York (NY): McGraw-Hill; 1996. pp. 2847-59.
12. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281-99.
PMID: 21731081
13. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG. Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma. 2007;24(6):991-9.
DOI: 10.1089/neu.2006.0242
PMID: 17600515
14. Xu GY, Hughes MG, Zhang L, Cain L, McAdoo DJ. Administration of glutamate into the spinal cord at extracellular concentrations reached post-injury causes functional impairments. Neurosci Lett. 2005;384(3):271-6.
DOI: 10.1016/j.neulet.2005.04.100
PMID: 15925447
15. Fehlings MG, Nguyen DH. Immunoglobulin G: a potential treatment to attenuate neuroinflammation following spinal cord injury. J Clin Immunol. 2010;30:S109-12.
DOI: 10.1007/s10875-010-9404-7
PMID: 20437085
16. Resnick DK. Updated guidelines for the management of acute cervical spine and spinal cord injury. Neurosurgery. 2013;72:1.
DOI: 10.1227/NEU.0b013e318276ee7e
PMID: 23417171
17. Vale FL, Burns J, Jackson AB, Hadley MN. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg. 1997;87(2):239-46.
DOI: 10.3171/jns.1997.87.2.0239
PMID: 9254087
18. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, et al. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma. 2011;28(8):1545-88.
DOI: 10.1089/neu.2009.1149
PMID: 20146558
19. Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 1999;158(2):351-65.
DOI: 10.1006/exnr.1999.7118
PMID: 10415142
20. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain. 2003;126(Pt 7):1628-37.
DOI: 10.1093/brain/awg178
PMID: 12805103
21. Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, et al. Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci. 2004;24(16):4043-51.
DOI: 10.1523/JNEUROSCI.5343-03.2004
PMID: 15102919
22. Schwartz M, Yoles E. Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma. 2006;23(3-4):360-70.
DOI: 10.1089/neu.2006.23.360
PMID: 16629622
23. Hirbec H, Gaviria M, Vignon J. Gacyclidine: a new neuroprotective agent acting at the N-methyl-D-aspartate receptor. CNS Drug Rev. 2001;7(2):172-98.
DOI: 10.1111/j.1527-3458.2001.tb00194.x
PMID: 11474423
24. Hall ED, Braughler JM. Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol. 1982;18(5):320-7.
DOI: 10.1016/0090-3019(82)90140-9
PMID: 7179094
25. Golding JD, Rigley MacDonald ST, Juurlink BH, Rosser BW. The effect of glutamine on locomotor performance and skeletal muscle myosins following spinal cord injury in rats. J Appl Physiol (1985). 2006;101(4):1045-52.
DOI: 10.1152/japplphysiol.00428.2006
PMID: 16778003
26. Faden AI, Jacobs TP, Mougey E, Holaday JW. Endorphins in experimental spinal injury: therapeutic effect of naloxone. Ann Neurol. 1981;10(4):326-32.
DOI: 10.1002/ana.410100403
PMID: 6274252
27. Luo J, Borgens R, Shi R. Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem. 2002;83(2):471-80.
DOI: 10.1046/j.1471-4159.2002.01160.x
PMID: 12423257
28. Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma. 2006;23(3-4):318-34.
DOI: 10.1089/neu.2006.23.318
PMID: 16629619
29. Bracken MB, Holford TR, Springer JE, Holford TR. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg. 1993;79(4):500-7.
DOI: 10.3171/jns.1993.79.4.0500
PMID: 8410217
30. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322(20):1405-11.
DOI: 10.1056/NEJM199005173222001
PMID: 2278545
31. Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 1997; 277: 1597–604.How might we step forward? Pharmacol Ther. 2011;132:15-29.
32. Evaniew N, Noonan VK, Fallah N, Kwon BK, Rivers CS, Ahn H, et al.; RHSCIR Network. Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Propensity Score-Matched Cohort Study from a Canadian Multi-Center Spinal Cord Injury Registry. J Neurotrauma. 2015;32(21):1674-83.
DOI: 10.1089/neu.2015.3963
PMID: 26065706
33. Fehlings MG, Wilson JR, Cho N. Methylprednisolone for the treatment of acute spinal cord injury: counterpoint. Neurosurgery. 2014;61:36-42.
DOI: 10.1227/NEU.0000000000000412
PMID: 25032529
34. Druschel C, Schaser KD, Schwab JM. Current practice of methylprednisolone administration for acute spinal cord injury in Germany: a national survey. Spine. 2013;38(11):E669-77.
DOI: 10.1097/BRS.0b013e31828e4dce
PMID: 23446768
35. Nagoshi N, Nakashima H, Fehlings MG. Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules. 2015;20(5):7775-89.
DOI: 10.3390/molecules20057775
PMID: 25939067
36. Popovich PG, Lemeshow S, Gensel JC, Tovar CA. Independent evaluation of the effects of glibenclamide on reducing progressive hemorrhagic necrosis after cervical spinal cord injury. Exp Neurol. 2012;233(2):615-22.
DOI: 10.1016/j.expneurol.2010.11.016
PMID: 21145891
37. Simard JM, Tsymbalyuk O, Keledjian K, Ivanov A, Ivanova S, Gerzanich V. Comparative effects of glibenclamide and riluzole in a rat model of severe cervical spinal cord injury. Exp Neurol. 2012;233(1):566-74.
DOI: 10.1016/j.expneurol.2011.11.044
PMID: 22177998
38. Hosier H, Peterson D, Tsymbalyuk O, Keledjian K, Smith BR, Ivanova S, et al. A Direct Comparison of Three Clinically Relevant Treatments in a Rat Model of Cervical Spinal Cord Injury. J Neurotrauma. 2015;32(21):1633-44.
DOI: 10.1089/neu.2015.3892
PMID: 26192071
39. Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, et al. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel). 2013;6(10):1287-303.
DOI: 10.3390/ph6101287
PMID: 24275850
40. Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A. Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev. 2012;35(3):293-311.
DOI: 10.1007/s10143-012-0385-2
PMID: 22539011
41. Sabapathy V, Tharion G, Kumar S. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions. Stem Cells Int. 2015;2015:132172.
DOI: 10.1155/2015/132172
PMID: 26240569
42. Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res. 2015;10(9):1356-8.
DOI: 10.4103/1673-5374.165209
PMID: 26604878
43. Pearse DD, Bunge MB. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord. J Neurotrauma. 2006;23(3-4):438-52.
DOI: 10.1089/neu.2006.23.437
PMID: 16629628
44. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7(8):628-43.
DOI: 10.1038/nrn1955
PMID: 16858391
45. Li Y, Decherchi P, Raisman G. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J Neurosci. 2003;23(3):727-31.
DOI: 10.1523/JNEUROSCI.23-03-00727.2003
PMID: 12574399
46. Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M, Matsas R. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain. 2007;130(Pt 8):2159-74.
DOI: 10.1093/brain/awm155
PMID: 17626035
47. Dalamagkas K, Tsintou M, Seifalian A, Seifalian AM. Translational Regenerative Therapies for Chronic Spinal Cord Injury. Int J Mol Sci. 2018;19(6):E1776.
DOI: 10.3390/ijms19061776
PMID: 29914060
48. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol Ther (Seoul). 2019;27(1):25-33.
DOI: 10.4062/biomolther.2017.260
PMID: 29902862
49. Saito F, Nakatani T, Iwase M, Maeda Y, Murao Y, Suzuki Y, et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci. 2012;30(2):127-36.
PMID: 22232031
50. Mendonça MV, Larocca TF, de Freitas Souza BS, Villarreal CF, Silva LF, Matos AC, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther. 2014;5(6):126.
DOI: 10.1186/scrt516
PMID: 25406723
51. Oraee-Yazdani S, Hafizi M, Atashi A, Ashrafi F, Seddighi AS, Hashemi SM, et al. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome. Spinal Cord. 2016;54(2):102-9.
DOI: 10.1038/sc.2015.142
PMID: 26526896
52. Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg. 2012;114(7):935-9.
DOI: 10.1016/j.clineuro.2012.02.003
PMID: 22464434
53. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.
DOI: 10.1038/cddis.2015.327
PMID: 26794657
54. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21:216-25.
DOI: 10.1038/cdd.2013.158
55. Vaquero J, Zurita M, Rico MA, Bonilla C, Aguayo C, Fernández C, et al.; Neurological Cell Therapy Group. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy. 2017;19(3):349-59.
DOI: 10.1016/j.jcyt.2016.12.002
PMID: 28089079
56. Spinal Cord Outcomes Partnership Endeavor (SCOPE, www.scope-sci.org) Current SCI Clinical Trials of Rehabilitation and Technological Interventions to Improve Functional Outcomes. [cited 2019 Feb 22]. Available from: https://www.asia-spinalinjury.org/wp-content/uploads/2016/07/SCOPE-Rehab-Technology-TrialsTable-2016.06.02.pdf./
57. Vaquero J, Zurita M. Cell transplantation in paraplegic patients: the importance of properly assessing the spinal cord morphology. Clin Transplant. 2013;27(6):968-71.
DOI: 10.1111/ctr.12267
PMID: 24147851
58. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med. 2009;37(7):S186-202.
DOI: 10.1097/CCM.0b013e3181aa5241
PMID: 19535947
59. Dietrich WD, Levi AD, Wang M, Green BA. Hypothermic treatment for acute spinal cord injury. Neurotherapeutics. 2011;8(2):229-39.
DOI: 10.1007/s13311-011-0035-3
PMID: 21416406
60. Lo TP, Cho KS, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, et al. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol. 2009;514(5):433-48.
DOI: 10.1002/cne.22014
PMID: 19350644
61. Levi AD, Casella G, Green BA, Dietrich WD, Vanni S, Jagid J, et al. Clinical outcomes using modest intravascular hypothermia after acute cervical spinal cord injury. Neurosurgery. 2010;66(4):670-7.
DOI: 10.1227/01.NEU.0000367557.77973.5F
PMID: 20190669
62. Dididze M, Green BA, Dietrich WD, Vanni S, Wang MY, Levi AD. Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord. 2013;51(5):395-400.
DOI: 10.1038/sc.2012.161
PMID: 23247015
63. Batchelor PE, Wills TE, Skeers P, Battistuzzo CR, Macleod MR, Howells DW, et al. Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury: a battle of time and pressure. PLoS One. 2013;8(8):e72659.
DOI: 10.1371/journal.pone.0072659
PMID: 24009695
64. Antonic A, Dottori M, Leung J, Sidon K, Batchelor PE, Wilson W, et al. Hypothermia protects human neurons. Int J Stroke. 2014;9(5):544-52.
DOI: 10.1111/ijs.12224
PMID: 24393199
65. American Spinal Injury Association. Chicago: American Spinal Injury Association; 2000.
66. Gerecht R. The lethal triad. Hypothermia, acidosis & coagulopathy create a deadly cycle for trauma patients. JEMS. 2014;39(4):56-60.
PMID: 24779101
67. Varon J, Acosta P. Therapeutic hypothermia: past, present, and future. Chest. 2008;133(5):1267-74.
DOI: 10.1378/chest.07-2190
PMID: 18460529
68. Hansebout RR, Hansebout CR. Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg Spine. 2014;20(5):550-61.
DOI: 10.3171/2014.2.SPINE13318
PMID: 24628130
69. Alkabie S, Boileau AJ. The role of therapeutic hypothermia after traumatic spinal cord injury-a systematic review. World Neurosurg. 2015;15:1247-54.
PMID: 26433095
70. Huang WL, King VR, Curran OE, Dyall SC, Ward RE, Lal N, et al. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury. Brain. 2007;130(Pt 11):3004-19.
DOI: 10.1093/brain/awm223
PMID: 17901087
71. Lim SN, Huang W, Hall JC, Michael-Titus AT, Priestley JV. Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid. Exp Neurol. 2013;239:13-27.
DOI: 10.1016/j.expneurol.2012.09.015
PMID: 23026410
72. Streijger F, Plunet WT, Lee JH, Liu J, Lam CK, Park S, et al. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One. 2013;8(11):e78765.
DOI: 10.1371/journal.pone.0078765
PMID: 24223849
73. Jeong MA, Plunet W, Streijger F, Lee JH, Plemel JR, Park S, et al. Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma. 2011;28(3):479-92.
DOI: 10.1089/neu.2010.1609
PMID: 21219083
74. Rabchevsky AG, Patel SP, Springer JE. Pharmacological interventions for spinal cord injury: where do we stand? How might we step forward? Pharmacol Ther. 2011;132(1):15-29.
DOI: 10.1016/j.pharmthera.2011.05.001
PMID: 21605594
75. Carlson GD, Minato Y, Okada A, Gorden CD, Warden KE, Barbeau JM, et al. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma. 1997;14(12):951-62.
DOI: 10.1089/neu.1997.14.951
PMID: 9475376
76. Carlson GD, Warden KE, Barbeau JM, Bahniuk E, Kutina-Nelson KL, Biro CL, et al. Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression. Spine. 1997;22(12):1285-91.
DOI: 10.1097/00007632-199706150-00002
PMID: 9201829
77. Dimar JR, Glassman SD, Raque GH, Zhang YP, Shields CB. The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine. 1999;24(16):1623-33.
DOI: 10.1097/00007632-199908150-00002
PMID: 10472095
78. Furlan JC, Noonan V, Cadotte DW, Fehlings MG. Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidence-based examination of pre-clinical and clinical studies. J Neurotrauma. 2011;28(8):1371-99.
DOI: 10.1089/neu.2009.1147
PMID: 20001726
79. Pointillart V, Petitjean ME, Wiart L, Vital JM, Lassié P, Thicoipé M, et al. Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord. 2000;38(2):71-6.
DOI: 10.1038/sj.sc.3100962
PMID: 10762178
80. van Middendorp JJ, Hosman AJ, Doi SA. The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J Neurotrauma. 2013;30(21):1781-94.
DOI: 10.1089/neu.2013.2932
PMID: 23815524
81. Fehlings MG, Vaccaro A, Wilson JR, Singh A, W Cadotte D, Harrop JS, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2):e32037.
DOI: 10.1371/journal.pone.0032037
PMID: 22384132
82. Wilson JR, Singh A, Craven C, Verrier MC, Drew B, Ahn H, et al. Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord. 2012;50(11):840-3.
DOI: 10.1038/sc.2012.59
PMID: 22565550
83. Wilson JR, BSc LT, Aarabi B, Anderson PA, Arnold PM, Brodke DS, et al. 181 Guidelines for the Management of Patients With Spinal Cord Injury: The Optimal Timing of Decompression. Neurosurgery. 2016;63:172.
DOI: 10.1227/01.neu.0000489750.82285.7f
84. Jug M, Kejžar N, Vesel M, Al Mawed S, Dobravec M, Herman S, et al. Neurological recovery after traumatic cervical cpinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 hours versus 8 to 24 hours after injury: a single center experience. J Neurotrauma. 2015;32(18):1385-92.
DOI: 10.1089/neu.2014.3767
PMID: 25658291
85. Grassner L, Wutte C, Klein B, Mach O, Riesner S, Panzer S, et al. Early decompression (< 8 h) after traumatic cervical spinal cord injury improves functional outcome as assessed by spinal cord independence measure after one year. J Neurotrauma. 2016;33(18):1658-66.
DOI: 10.1089/neu.2015.4325
PMID: 27050499
86. Saadoun S, Chen S, Papadopoulos MC. Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. J Neurol Neurosurg Psychiatry. 2017;88(5):452-3.
DOI: 10.1136/jnnp-2016-314600
PMID: 27864426
87. Phang I, Zoumprouli A, Saadoun S, Papadopoulos MC. Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study. J Neurosurg Spine. 2016;25(3):398-405.
DOI: 10.3171/2016.1.SPINE151317
PMID: 27129044
88. Phang I, Werndle MC, Saadoun S, Varsos G, Czosnyka M, Zoumprouli A, et al. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study. J Neurotrauma. 2015;32(12):865-74.
DOI: 10.1089/neu.2014.3668
PMID: 25705999
Downloads
Published
Issue
Section
License
The Author transfers to the Publisher (Slovenian Medical Association) all economic copyrights following form Article 22 of the Slovene Copyright and Related Rights Act (ZASP), including the right of reproduction, the right of distribution, the rental right, the right of public performance, the right of public transmission, the right of public communication by means of phonograms and videograms, the right of public presentation, the right of broadcasting, the right of rebroadcasting, the right of secondary broadcasting, the right of communication to the public, the right of transformation, the right of audiovisual adaptation and all other rights of the author according to ZASP.
The aforementioned rights are transferred non-exclusively, for an unlimited number of editions, for the term of the statutory
The Author can make use of his work himself or transfer subjective rights to others only after 3 months from date of first publishing in the journal Zdravniški vestnik/Slovenian Medical Journal.
The Publisher (Slovenian Medical Association) has the right to transfer the rights of acquired parties without explicit consent of the Author.
The Author consents that the Article be published under the Creative Commons BY-NC 4.0 (attribution-non-commercial) or comparable licence.