Genetic variability of homologous recombination repair genes and radiotherapy outcome in breast cancer patients
DOI:
https://doi.org/10.6016/ZdravVestn.3370Keywords:
radiotherapy, breast cancer, adverse events, DNA repair, polymorphismAbstract
Breast cancer is a heterogeneous disease that can be treated by surgery, systemic therapy, and radiotherapy. Adjuvant breast cancer radiotherapy has important implications for patient survival but also causes adverse events. During radiation, not only cancer cells are irradiated, but also normal cells of surrounding tissues. The degree of adverse events after radiotherapy varies among patients with the same treatment scheme, which could be a result of genetic variability. Radiation causes both tumour cell DNA damage and tumour cell death. The double-strand break is the most harmful type of DNA damage following radiation, which can be repaired by homologous recombination. Genetic variability of genes encoding DNA repair proteins can affect their expression and function, which could furthermore impact the degree of successful DNA repair and consequently also radiotherapy outcome.
This article describes the association between polymorphisms in genes involved in homologous recombination repair, such as RAD51 rs1801320, rs1801321 and XRCC3 rs861539, rs1799794, and radiotherapy outcome in breast cancer patients.
Downloads
References
1. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al.; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30(8):1194-220.
DOI: 10.1093/annonc/mdz173
PMID: 31161190
2. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134-50.
DOI: 10.1016/S0140-6736(16)31891-8
PMID: 27865536
3. Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002;86(1):76-83.
DOI: 10.1038/sj.bjc.6600008
PMID: 11857015
4. Hočevar M, Strojan P, ur. Onkologija: učbenik za študente medicine. Ljubljana: Onkološki inštitut Ljubljana; 2018. pp. 225-7.
5. Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: A bioinformatic approach. Cancer Lett. 2017;403:37-47.
DOI: 10.1016/j.canlet.2017.05.023
PMID: 28619524
6. Dörr W. Pathogenesis of normal tissue side effects. 4th ed. Boca Raton: CRC Press; 2009.
7. Petrovič O. Zgodnja rehabilitacija bolnikov z rakom. Rehabilitacija (Ljubljana). 2010;9(1):48-52.
8. Rockson SG. Lymphedema after Breast Cancer Treatment. N Engl J Med. 2018;379(20):1937-44.
DOI: 10.1056/NEJMcp1803290
PMID: 30428297
9. Ozyigit G, Gultekin M. Current role of modern radiotherapy techniques in the management of breast cancer. World J Clin Oncol. 2014;5(3):425-39.
DOI: 10.5306/wjco.v5.i3.425
PMID: 25114857
10. Harris EE. Breast Radiation and the Heart: Cardiac Toxicity and Cardiac Avoidance. Clin Breast Cancer. 2021;21(6):492-6.
DOI: 10.1016/j.clbc.2021.07.012
PMID: 34474986
11. National Cancer Institute. NCI Common Terminology Criteria for Adverse Events (CTCAE). Bethesda: National Cancer Institute; 2022 [cited 2022 Sep 30]. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/About.html.
12. Holthusen H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie. 1936;57(254):51a.
13. Fekrmandi F, Panzarella T, Dinniwell RE, Helou J, Levin W. Predictive factors for persistent and late radiation complications in breast cancer survivors. Clin Transl Oncol. 2020;22(3):360-9.
DOI: 10.1007/s12094-019-02133-8
PMID: 31123988
14. Lilla C, Ambrosone CB, Kropp S, Helmbold I, Schmezer P, von Fournier D, et al. Predictive factors for late normal tissue complications following radiotherapy for breast cancer. Breast Cancer Res Treat. 2007;106(1):143-50.
DOI: 10.1007/s10549-006-9480-9
PMID: 17221151
15. Varga Z, Cserháti A, Kelemen G, Boda K, Thurzó L, Kahán Z. Role of systemic therapy in the development of lung sequelae after conformal radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;80(4):1109-16.
DOI: 10.1016/j.ijrobp.2010.03.044
PMID: 21549513
16. Fiorentino A, Mazzola R, Ricchetti F, Giaj Levra N, Fersino S, Naccarato S, et al. Intensity modulated radiation therapy with simultaneous integrated boost in early breast cancer irradiation. Report of feasibility and preliminary toxicity. Cancer Radiother. 2015;19(5):289-94.
DOI: 10.1016/j.canrad.2015.02.013
PMID: 26206732
17. Meattini I, Guenzi M, Fozza A, Vidali C, Rovea P, Meacci F, et al. Overview on cardiac, pulmonary and cutaneous toxicity in patients treated with adjuvant radiotherapy for breast cancer. Breast Cancer. 2017;24(1):52-62.
DOI: 10.1007/s12282-016-0694-3
PMID: 27025498
18. Azria D, Ozsahin M, Kramar A, Peters S, Atencio DP, Crompton NE, et al. Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin Cancer Res. 2008;14(19):6284-8.
DOI: 10.1158/1078-0432.CCR-08-0700
PMID: 18829510
19. Goričar K, Erčulj N, Zadel M, Dolžan V. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage. Radiol Oncol. 2012;46(1):46-53.
DOI: 10.2478/v10019-012-0001-7
PMID: 22933979
20. O’Connor MJ. Targeting the DNA Damage Response in Cancer. Mol Cell. 2015;60(4):547-60.
DOI: 10.1016/j.molcel.2015.10.040
PMID: 26590714
21. Chen F, Zhang H, Pu F. Association between a functional variant in RAD51 gene’s 3′ untranslated region and its mRNA expression in lymphoblastoid cell lines. Springerplus. 2016;5(1):1688.
DOI: 10.1186/s40064-016-3339-2
PMID: 27733989
22. Chabner BA, Roberts TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65-72.
DOI: 10.1038/nrc1529
PMID: 15630416
23. Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst). 2008;7(5):686-93.
DOI: 10.1016/j.dnarep.2007.12.008
PMID: 18243065
24. Al Zoubi MS, Zavaglia K, Mazanti C, Al Hamad M, Al Batayneh K, Aljabali AA, et al. Polymorphisms and mutations in GSTP1, RAD51, XRCC1 and XRCC3 genes in breast cancer patients. Int J Biol Markers. 2017;32(3):e337-43.
DOI: 10.5301/ijbm.5000258
PMID: 28315507
25. Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature. 1997;386(6627):804-10.
DOI: 10.1038/386804a0
PMID: 9126738
26. Carreira A, Hilario J, Amitani I, Baskin RJ, Shivji MK, Venkitaraman AR, et al. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell. 2009;136(6):1032-43.
DOI: 10.1016/j.cell.2009.02.019
PMID: 19303847
27. Jensen RB. BRCA2: one small step for DNA repair, one giant protein purified. Yale J Biol Med. 2013;86(4):479-89.
PMID: 24348212
28. Foray N, Randrianarison V, Marot D, Perricaudet M, Lenoir G, Feunteun J. Gamma-rays-induced death of human cells carrying mutations of BRCA1 or BRCA2. Oncogene. 1999;18(51):7334-42.
DOI: 10.1038/sj.onc.1203165
PMID: 10602489
29. Henning W, Stürzbecher HW. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology. 2003;193(1-2):91-109.
DOI: 10.1016/S0300-483X(03)00291-9
PMID: 14599770
30. Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci USA. 2014;111(12):4536-41.
DOI: 10.1073/pnas.1402604111
PMID: 24616504
31. Raderschall E, Golub EI, Haaf T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA. 1999;96(5):1921-6.
DOI: 10.1073/pnas.96.5.1921
PMID: 10051570
32. Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, et al. Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci. 2002;115(Pt 1):153-64.
DOI: 10.1242/jcs.115.1.153
PMID: 11801733
33. Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res. 2002;62(1):219-25.
PMID: 11782381
34. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-11.
DOI: 10.1093/nar/29.1.308
PMID: 11125122
35. Hasselbach L, Haase S, Fischer D, Kolberg HC, Stürzbecher HW. Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol. 2005;26(6):589-98.
PMID: 16398215
36. Zhou GW, Hu J, Peng XD, Li Q. RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;125(2):529-35.
DOI: 10.1007/s10549-010-1031-8
PMID: 20623332
37. Tulbah S, Alabdulkarim H, Alanazi M, Parine NR, Shaik J, Pathan AA, et al. Polymorphisms in RAD51 and their relation with breast cancer in Saudi females. OncoTargets Ther. 2016;9:269-77.
PMID: 26834486
38. Falvo E, Strigari L, Citro G, Giordano C, Arcangeli S, Soriani A, et al. Dose and polymorphic genes xrcc1, xrcc3, gst play a role in the risk of articledeveloping erythema in breast cancer patients following single shot partial breast irradiation after conservative surgery. BMC Cancer. 2011;11(1):291.
DOI: 10.1186/1471-2407-11-291
PMID: 21749698
39. Falvo E, Strigari L, Citro G, Giordano C, Boboc G, Fabretti F, et al. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation. J Exp Clin Cancer Res. 2012;31(1):7.
DOI: 10.1186/1756-9966-31-7
PMID: 22272830
40. Söderlund Leifler K, Asklid A, Fornander T, Stenmark Askmalm M. The RAD51 135G>C polymorphism is related to the effect of adjuvant therapy in early breast cancer. J Cancer Res Clin Oncol. 2015;141(5):797-804.
DOI: 10.1007/s00432-014-1859-0
PMID: 25354554
41. Osti MF, Nicosia L, Agolli L, Gentile G, Falco T, Bracci S, et al. Potential Role of Single Nucleotide Polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute Toxicity in Rectal Cancer Patients Treated With Preoperative Radiochemotherapy. Am J Clin Oncol. 2017;40(6):535-42.
DOI: 10.1097/COC.0000000000000182
PMID: 25811296
42. Yin M, Liao Z, Huang YJ, Liu Z, Yuan X, Gomez D, et al. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS One. 2011;6(5):e20055.
DOI: 10.1371/journal.pone.0020055
PMID: 21647442
43. Nogueira A, Catarino R, Faustino I, Nogueira-Silva C, Figueiredo T, Lombo L, et al. Role of the RAD51 G172T polymorphism in the clinical outcome of cervical cancer patients under concomitant chemoradiotherapy. Gene. 2012;504(2):279-83.
DOI: 10.1016/j.gene.2012.05.037
PMID: 22634097
44. Vral A, Willems P, Claes K, Poppe B, Perletti G, Thierens H. Combined effect of polymorphisms in Rad51 and Xrcc3 on breast cancer risk and chromosomal radiosensitivity. Mol Med Rep. 2011;4(5):901-12.
PMID: 21725594
45. Cheng J, Liu W, Zeng X, Zhang B, Guo Y, Qiu M, et al. XRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma. Cancer Sci. 2015;106(12):1678-86.
DOI: 10.1111/cas.12820
PMID: 26383967
46. Pal J, Gold JS, Munshi NC, Shammas MA. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target. Transl Res. 2013;162(6):364-70.
DOI: 10.1016/j.trsl.2013.09.003
PMID: 24090770
47. Goricar K, Dolzan V. Homologous Recombination Repair Polymorphisms, Cancer Susceptibility and Treatment Outcome. London: IntechOpen; 2015.
DOI: 10.5772/59729
48. Sarwar R, Mahjabeen I, Bashir K, Saeed S, Kayani MA. Haplotype Based Analysis of XRCC3 Gene Polymorphisms in Thyroid Cancer. Cell Physiol Biochem. 2017;42(1):22-33.
DOI: 10.1159/000477109
PMID: 28490032
49. Han S, Zhang HT, Wang Z, Xie Y, Tang R, Mao Y, et al. DNA repair gene XRCC3 polymorphisms and cancer risk: a meta-analysis of 48 case-control studies. Eur J Hum Genet. 2006;14(10):1136-44.
DOI: 10.1038/sj.ejhg.5201681
PMID: 16791138
50. He XF, Wei W, Su J, Yang ZX, Liu Y, Zhang Y, et al. Association between the XRCC3 polymorphisms and breast cancer risk: meta-analysis based on case-control studies. Mol Biol Rep. 2012;39(5):5125-34.
DOI: 10.1007/s11033-011-1308-y
PMID: 22161248
51. Ali AM, AbdulKareem H, Al Anazi M, Reddy Parine N, Shaik JP, Alamri A, et al. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females. BioMed Res Int. 2016;2016:8721052.
DOI: 10.1155/2016/8721052
PMID: 26881229
52. Andreassen CN, Alsner J, Overgaard M, Overgaard J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother Oncol. 2003;69(2):127-35.
DOI: 10.1016/j.radonc.2003.09.010
PMID: 14643949
53. Mangoni M, Bisanzi S, Carozzi F, Sani C, Biti G, Livi L, et al. Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients. Int J Radiat Oncol Biol Phys. 2011;81(1):52-8.
DOI: 10.1016/j.ijrobp.2010.04.023
PMID: 20708344
54. Andreassen CN, Alsner J, Overgaard J, Herskind C, Haviland J, Owen R, et al. TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol. 2005;75(1):18-21.
DOI: 10.1016/j.radonc.2004.12.012
PMID: 15878096
55. Chang-Claude J, Ambrosone CB, Lilla C, Kropp S, Helmbold I, von Fournier D, et al. Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer. 2009;100(10):1680-6.
DOI: 10.1038/sj.bjc.6605036
PMID: 19367277
56. Sterpone S, Cornetta T, Padua L, Mastellone V, Giammarino D, Testa A, et al. DNA repair capacity and acute radiotherapy adverse effects in Italian breast cancer patients. Mutat Res. 2010;684(1-2):43-8.
DOI: 10.1016/j.mrfmmm.2009.11.009
PMID: 19962393
57. Song YZ, Han FJ, Liu M, Xia CC, Shi WY, Dong LH. Association between Single Nucleotide Polymorphisms in XRCC3 and Radiation-Induced Adverse Effects on Normal Tissue: A Meta-Analysis. PLoS One. 2015;10(6):e0130388.
DOI: 10.1371/journal.pone.0130388
PMID: 26091483
58. Liu W, Ma S, Liang L, Kou Z, Zhang H, Yang J. The association between XRCC3 rs1799794 polymorphism and cancer risk: a meta-analysis of 34 case-control studies. BMC Med Genomics. 2021;14(1):117.
DOI: 10.1186/s12920-021-00965-4
PMID: 33931047
59. Rass E, Grabarz A, Bertrand P, Lopez BS. Réparation des cassures double-brin de l’ADN, un mécanisme peut en cacher un autre : la ligature d’extrémités non homologues alternative. Cancer Radiother. 2012;16(1):1-10.
DOI: 10.1016/j.canrad.2011.05.004
PMID: 21737335
Downloads
Published
Issue
Section
License
The Author transfers to the Publisher (Slovenian Medical Association) all economic copyrights following form Article 22 of the Slovene Copyright and Related Rights Act (ZASP), including the right of reproduction, the right of distribution, the rental right, the right of public performance, the right of public transmission, the right of public communication by means of phonograms and videograms, the right of public presentation, the right of broadcasting, the right of rebroadcasting, the right of secondary broadcasting, the right of communication to the public, the right of transformation, the right of audiovisual adaptation and all other rights of the author according to ZASP.
The aforementioned rights are transferred non-exclusively, for an unlimited number of editions, for the term of the statutory
The Author can make use of his work himself or transfer subjective rights to others only after 3 months from date of first publishing in the journal Zdravniški vestnik/Slovenian Medical Journal.
The Publisher (Slovenian Medical Association) has the right to transfer the rights of acquired parties without explicit consent of the Author.
The Author consents that the Article be published under the Creative Commons BY-NC 4.0 (attribution-non-commercial) or comparable licence.