Computer-assisted measurement of sagittal pelvic alignment parameters from radiographic images

Authors

  • Robert Korez Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
  • Michael Putzier Charité – University Berlin, Berlin, Germany
  • Tomaž Vrtovec Faculty of Electrical Engineering, University of Ljubljana, Ljubljana

DOI:

https://doi.org/10.6016/ZdravVestn.2829

Keywords:

X-ray imaging, musculoskeletal system, pelvic incidence, medical image analysis, deep learning

Abstract

Background: Sagittal pelvic alignment is an important aspect of the sagittal balance that can be quantitatively assessed by measuring pelvic geometrical parameters, i.e. the sacral slope (SS), pelvic tilt (PT) and pelvic incidence (PI). In this paper we present the results of a completely automated computer-assisted measurement of the parameters of sagittal pelvic alignment from radiographic images, and test the hypothesis stating that there are no statistically significant differences between the obtained and reference manual measurements.

Methods: Automated computer-assisted measurements of the sagittal pelvic alignment parameters are based on the latest technologies in the field of medical image processing and analysis, namely on the convolutional neural networks as a special group of deep learning techniques. In each sagittal radiographic image of the pelvis, regions of interest (sacral endplate and both femoral heads) are first automatically defined, and then distinctive points are detected within these regions, i.e. the anterior edge, the center and the posterior edge of the sacral endplate, to which a line is fitted at a later stage, and the centers of both femoral heads with the corresponding midpoint representing the hip axis. From the hip axis, and the line along the sacral endplate and its center point we can finally compute SS, PT and PI.

Results: Measurements were retrospectively performed on sagittal radiographic images of the pelvis from 38 subjects (15 males and 23 females; mean age 71.1 years). Statistical analysis of reference manual and automated computer-assisted measurements of the sagittal pelvic alignment parameters revealed a relatively good agreement and low variability. Respectively for SS, PT and PI, the mean absolute difference (standard deviation) was namely 5.2º (3.8º), 2.2º (2.0º) and 5.1º (4.4º), the correlation coefficient was 0.73, 0.94 and 0.82 (p < 10-6), and the paired t-test always confirmed the null hypothesis (p > 0.05).

Conclusion: The results showed that there are no statistically significant differences between the reference manual and automated computer-assisted measurements of the sagittal pelvic alignment parameters. Moreover, the deviation from reference manual measurements is within the repeatability and reliability of manual parameter measurements, and therefore the parameters of sagittal pelvic alignment can be accurately determined by the automated computer-assisted measurement. Nevertheless, verification and confirmation of measured values cannot be completely omitted, as the deviation can be for specific cases quite large, especially due to the natural biological variability of the human anatomy and properties of radiographic imaging.

Downloads

Download data is not yet available.

References

Li W, Sun Z, Guo Z, Qi Q, Kim SD, Zeng Y, et al. Analysis of spinopelvic sagittal alignment in patients with thoracic and thoracolumbar angular kyphosis. Spine. 2013;38(13):E813-8. https://doi.org/10.1097/BRS.0b013e3182913219 https://pubmed.ncbi.nlm.nih.gov/23524868

Obeid I, Hauger O, Aunoble S, Bourghli A, Pellet N, Vital JM. Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J. 2011;20(S5):681-5. https://doi.org/10.1007/s00586-011-1936-x https://pubmed.ncbi.nlm.nih.gov/21870096

Labelle H, Mac-Thiong JM, Roussouly P. Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J. 2011;20(S5):641-6. https://doi.org/10.1007/s00586-011-1932-1 https://pubmed.ncbi.nlm.nih.gov/21809015

Rečnik G, Millčič M, Fokter SK, Mirnik N, Moličnik A, Vogrin M. Zgodnje prednosti manj invazivne transforaminalne zatrditve ledvene hrbtenice v primerjavi s klasično odprto metodo. Zdrav Vestn. 2015;84(5):358-65.

Knez D, Mohar J, Cirman RJ, Likar B, Pernuš F, Vrtovec T. Določanje velikosti in vstavitvene trajektorije pedikularnih vijakov v računalniškotomografskih (CT) slikah deformacij prsne hrbtenice: primerjava ročnega in računalniško podprtega predoperacijskega načrtovanja. Zdrav Vestn. 2016;85(11–12):619-31.

Fokter SK, Rečnik G. The use of porous tantalum cages in the treatment of unremitting spondylodiscitis: a case report. Zdrav Vestn. 2018;87(1–2):41-8. https://doi.org/10.6016/ZdravVestn.2596

Schlösser TP, Janssen MM, Hogervorst T, Vrtovec T, de Vos J, Öner FC, et al. The odyssey of sagittal pelvic morphology during human evolution: a perspective on different Hominoidae. Spine J. 2017;17(8):1202-6. https://doi.org/10.1016/j.spinee.2017.03.016 https://pubmed.ncbi.nlm.nih.gov/28343047

Le Huec JC, Aunoble S, Philippe L, Nicolas P. Pelvic parameters: origin and significance. Eur Spine J. 2011;20(S5):564-71. https://doi.org/10.1007/s00586-011-1940-1 https://pubmed.ncbi.nlm.nih.gov/21830079

Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment. Spine J. 2012;12(5):433-46. https://doi.org/10.1016/j.spinee.2012.02.013 https://pubmed.ncbi.nlm.nih.gov/22480531

Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. Evaluation of pelvic morphology in the sagittal plane. Spine J. 2013;13(11):1500-9. https://doi.org/10.1016/j.spinee.2013.06.034 https://pubmed.ncbi.nlm.nih.gov/24094715

Schlösser TP, Janssen MM, Vrtovec T, Pernuš F, Öner FC, Viergever MA, et al. Evolution of the ischio-iliac lordosis during natural growth and its relation with the pelvic incidence. Eur Spine J. 2014;23(7):1433-41. https://doi.org/10.1007/s00586-014-3358-z https://pubmed.ncbi.nlm.nih.gov/24838427

Lafage R, Ferrero E, Henry JK, Challier V, Diebo B, Liabaud B, et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 2015;15(12):2493-502. https://doi.org/10.1016/j.spinee.2015.08.067 https://pubmed.ncbi.nlm.nih.gov/26343243

Maillot C, Ferrero E, Fort D, Heyberger C, Le Huec JC. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: keops(®). Eur Spine J. 2015;24(7):1574-81. https://doi.org/10.1007/s00586-015-3817-1 https://pubmed.ncbi.nlm.nih.gov/25724685

Weinberg DS, Morris WZ, Gebhart JJ, Liu RW. Pelvic incidence: an anatomic investigation of 880 cadaveric specimens. Eur Spine J. 2016;25(11):3589-95. https://doi.org/10.1007/s00586-015-4317-z https://pubmed.ncbi.nlm.nih.gov/26538158

Saltychev M, Pernaa K, Seppänen M, Mäkelä K, Laimi K. Pelvic incidence and hip disorders. Acta Orthop. 2018;89(1):66-70. https://doi.org/10.1080/17453674.2017.1377017 https://pubmed.ncbi.nlm.nih.gov/28914101

Brink R, Varvuch L, Schlösser TP, Abul-Kasim K, Ohlin A, Tropp H, et al. Three-dimensional pelvic incidence is much higher in (thoraco)lumbar scoliosis than in thoracic scoliosis and controls. Eur Spine J. 2019;28(3):544-50. https://doi.org/10.1007/s00586-018-5718-6 https://pubmed.ncbi.nlm.nih.gov/30128762

Vengust R, Košak R, Vodičar M, Travnik L, Gorenšek M. Corner osteotomy for treatment of fixed sagittal malalignment following previous spinal fusion: case report. In: Annual Spine Experts Group Meeting & Slovenia 2017 Spine Symposium. Ljubljana. 23 Nov 2017;

Milčić M. Compliance ability of intrinsic pelvis parameters due to changes in sagittal balance and load distribution. In: Annual Spine Experts Group Meeting & Slovenia 2017 Spine Symposium. Ljubljana. 23 Nov 2017;

Le Huec JC. Sagittal balance in different pathology: spondylolisthesis with and without lysis. In: Annual Spine Experts Group Meeting & Slovenia 2017 Spine Symposium. Ljubljana. 23 Nov 2017; 2017.

Le Huec JC. Osteotomies to correct sagittal imbalance and their complications. In: Annual Spine Experts Group Meeting & Slovenia 2017 Spine Symposium. Ljubljana. 23 Nov 2017; 2017.

Duval-Beaupere G, Schmidt C, Cosson P. A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng. 1992;20(4):451-62. https://doi.org/10.1007/BF02368136 https://pubmed.ncbi.nlm.nih.gov/1510296

Vaz G, Roussouly P, Berthonnaud E, Dimnet J. Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J. 2002;11(1):80-7. https://doi.org/10.1007/s005860000224 https://pubmed.ncbi.nlm.nih.gov/11931071

Legaye J, Duval-Beaupere G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7(2):99-103. https://doi.org/10.1007/s005860050038 https://pubmed.ncbi.nlm.nih.gov/9629932

Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech. 2005;18(1):40-7. https://doi.org/10.1097/01.bsd.0000117542.88865.77 https://pubmed.ncbi.nlm.nih.gov/15687851

Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O’Brien M, Chopin D, et al. Spondylolisthesis, pelvic incidence, and spinopelvic balance. Spine. 2004;29(18):2049-54. https://doi.org/10.1097/01.brs.0000138279.53439.cc https://pubmed.ncbi.nlm.nih.gov/15371707

Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J. 2007;16(9):1459-67. https://doi.org/10.1007/s00586-006-0294-6 https://pubmed.ncbi.nlm.nih.gov/17211522

Brink RC, Vavruch L, Schlösser TPC, Abul-Kasim K, Ohlin A, Tropp H, et al. Three-dimensional pelvic incidence is much higher in (thoraco)lumbar scoliosis than in controls. Eur Spine J. 2019;28(3):544-50. https://doi.org/10.1007/s00586-018-5718-6 https://pubmed.ncbi.nlm.nih.gov/30128762

Vrtovec T, Janssen MM, Pernuš F, Castelein RM, Viergever MA. Analysis of pelvic incidence from 3-dimensional images of a normal population. Spine. 2012;37(8):E479-85. https://doi.org/10.1097/BRS.0b013e31823770af https://pubmed.ncbi.nlm.nih.gov/21971132

O’Brien MF, Kuklo TR, Blanke KM, Lenke LG. Spinal Deformity Study Group’s Radiographic Measurement Manual. Memphis: Medtronic Sofamor Danes Inc; 2008.

Waldman SD, Campbell RSD. Radiology. In: Imaging of Pain. Philadelphia: Saunders Elsevier; 2011. pp. 3-5.

Berthonnaud E, Labelle H, Roussouly P, Grimard G, Vaz G, Dimnet J. A variability study of computerized sagittal spinopelvic radiologic measurements of trunk balance. J Spinal Disord Tech. 2005;18(1):66-71. https://doi.org/10.1097/01.bsd.0000128345.32521.43 https://pubmed.ncbi.nlm.nih.gov/15687855

Yamada K, Aota Y, Higashi T, Ishida K, Nimura T, Saito T. Accuracies in measuring spinopelvic parameters in full-spine lateral standing radiograph. Spine. 2015;40(11):E640-6. https://doi.org/10.1097/BRS.0000000000000904 https://pubmed.ncbi.nlm.nih.gov/25816139

Tyrakowski M, Yu H, Siemionow K. Pelvic incidence and pelvic tilt measurements using femoral heads or acetabular domes to identify centers of the hips: comparison of two methods. Eur Spine J. 2015;24(6):1259-64. https://doi.org/10.1007/s00586-014-3739-3 https://pubmed.ncbi.nlm.nih.gov/25550104

Vialle R, Ilharreborde B, Dauzac C, Guigui P. Intra and inter-observer reliability of determining degree of pelvic incidence in high-grade spondylolisthesis using a computer assisted method. Eur Spine J. 2006;15(10):1449-53. https://doi.org/10.1007/s00586-006-0096-x https://pubmed.ncbi.nlm.nih.gov/16596420

Dimar JR, Carreon LY, Labelle H, Djurasovic M, Weidenbaum M, Brown C, et al. Intra- and inter-observer reliability of determining radiographic sagittal parameters of the spine and pelvis using a manual and a computer-assisted methods. Eur Spine J. 2008;17(10):1373-9. https://doi.org/10.1007/s00586-008-0755-1 https://pubmed.ncbi.nlm.nih.gov/18726124

Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19(1):221-48. https://doi.org/10.1146/annurev-bioeng-071516-044442 https://pubmed.ncbi.nlm.nih.gov/28301734

Lin TY, Goyal P, Girshick R, He K, Dollár P. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision - ICCV 2017. Oct 22 2017 to oct 2 2017; Venice, Ital. [cited 2019 Aug 26]. Available from: https://www.computer.org/csdl/proceedings-article/iccv/2017/1032c999/12OmNApu5iv

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems. Dec 2012; [cited 2019 Aug 26]. Available from: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Published

2019-01-14

How to Cite

1.
Computer-assisted measurement of sagittal pelvic alignment parameters from radiographic images. ZdravVestn [Internet]. 2019 Jan. 14 [cited 2024 Nov. 2];87(11-12):519-2. Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/2829