In vitro models of the endocrine pancreas
DOI:
https://doi.org/10.6016/ZdravVestn.3001Keywords:
In vitro models, pancreas, bioscaffolds, 3D printing, tissue slice methodAbstract
Ambitions to develop artificial tissue substitutes, combined with the need to study underlying mechanisms of disease under controlled conditions, shortcomings of animal models, as well as ethical constraints were the main driving forces behind the development of advanced in vitro models. These are defined as alternative experimental systems made by leveraging recent advances in tissue engineering and additive manufacturing that mimic tissue or organ level physiology in vitro. Simple in vitro models are already being used in many applications, however due to their many drawbacks, they incompletely mimic dynamic responses of native tissues. In order to construct functionally more relevant in vitro models, cells need to be grown in three-dimensional (3D) environments or bioscaffolds. Generally, bioscaffolds must recapitulate the microarchitecture, hierarchical structure, physical properties, and composition of native tissues. Nonetheless, progress towards building more complex models is hindered primarily by the diffusion of gases and nutrients into the constructs´ interior. Currently, 3D printing presents the most promising solution for the production of advanced bioscaffolds which resolve the above mentioned limitations. In addition to the technique´s ability to simultaneously use multiple biocompatible materials, 3D printing enables material deposition with micrometer spatial resolution under cell-friendly conditions. The development of a functional in vitro pancreas model is governed by the desire to study diabetes aetiology and is one of the main goals of the in vitro modelling domain, which to-date remains unfulfilled. The tissue slice method, despite having some drawbacks, presents the gold standard for basic and translational studies of the pancreas, while current most advanced 3D fabricated in vitro pancreas models mimic only basic functions of the organ. The purpose of this review is to provide an overview of in vitro models with a focus on in vitro models of the endocrine pancreas. We will highlight different model types and fundamental elements which need to be considered when constructing a model. Emphasis will be placed on more complex 3D fabricated in vitro models, tissue slices, bioscaffold material properties, and use of 3D printing for the fabrication of advanced bioscaffolds. We believe that simultaneous development of advanced materials, micro-manufacturing technologies, and advanced cell culture methods presents a very promising approach towards the construction of a functional in vitro pancreas model.
Downloads
References
1. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al.; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110(9):3507-12.
DOI: 10.1073/pnas.1222878110
PMID: 23401516
2. Langer R, Vacanti J. Advances in tissue engineering. J Pediatr Surg. 2016;51(1):8-12.
DOI: 10.1016/j.jpedsurg.2015.10.022
PMID: 26711689
3. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12.
DOI: 10.1126/scitranslmed.3004890
PMID: 23152327
4. Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Sci Am. 2009;300(5):64-71.
DOI: 10.1038/scientificamerican0509-64
PMID: 19438051
5. Wobma H, Vunjak-Novakovic G. Tissue Engineering and Regenerative Medicine 2015: A Year in Review. Tissue Eng Part B Rev. 2016;22(2):101-13.
DOI: 10.1089/ten.teb.2015.0535
PMID: 26714410
6. Park KM, Shin YM, Kim K, Shin H. Tissue Engineering and Regenerative Medicine 2017: A Year in Review. Tissue Eng Part B Rev. 2018;24(5):327-44.
DOI: 10.1089/ten.teb.2018.0027
PMID: 29652594
7. Skelin M, Rupnik M, Cencic A. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX. 2010;27(2):105-13.
DOI: 10.14573/altex.2010.2.105
PMID: 20686743
8. Nestor CE, Ottaviano R, Reinhardt D, Cruickshanks HA, Mjoseng HK, McPherson RC, et al. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems. Genome Biol. 2015;16(1):11.
DOI: 10.1186/s13059-014-0576-y
PMID: 25648825
9. Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, et al. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 2016;15(11):751-69.
DOI: 10.1038/nrd.2016.175
PMID: 27616293
10. Singh VK, Kumar N, Kalsan M, Saini A, Chandra R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J Stem Cells. 2015;10(1):43-62.
PMID: 26665937
11. Wills QF, Boothe T, Asadi A, Ao Z, Warnock GL, Kieffer TJ, et al. Statistical approaches and software for clustering islet cell functional heterogeneity. Islets. 2016;8(2):48-56.
DOI: 10.1080/19382014.2016.1150664
PMID: 26909740
12. de Lázaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release. 2014;185:37-44.
DOI: 10.1016/j.jconrel.2014.04.011
PMID: 24746625
13. Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci. 2011;100(1):59-74.
DOI: 10.1002/jps.22257
PMID: 20533556
14. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18(5-6):240-9.
DOI: 10.1016/j.drudis.2012.10.003
PMID: 23073387
15. Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat. 2015;227(6):746-56.
DOI: 10.1111/joa.12257
PMID: 25411113
16. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207-18.
DOI: 10.1089/adt.2014.573
PMID: 24831787
17. Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front Bioeng Biotechnol. 2017;5:40.
DOI: 10.3389/fbioe.2017.00040
PMID: 28798911
18. Mattei G, Giusti S, Ahluwalia A. Design criteria for generating physiologically relevant in vitro models in bioreactors. Processes (Basel). 2014;2(3):548-69.
DOI: 10.3390/pr2030548
19. Di Nardo P, Minieri M, Ahluwalia A. Engineering the Stem Cell Niche and the Differentiative Micro-and Macroenvironment: Technologies and Tools for Applying Biochemical, Physical and Structural Stimuli and Their Effects on Stem Cells. In: Artmann GM, Minter S, Hescheler J, eds. Stem Cell Engineering. Berlin: Heidelberg: Springer; 2011. pp. 41-59.
20. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153-70.
DOI: 10.1098/rsif.2010.0223
PMID: 20719768
21. Tayalia P, Mooney DJ. Controlled growth factor delivery for tissue engineering. Adv Mater. 2009;21(32-33):3269-85.
DOI: 10.1002/adma.200900241
PMID: 20882497
22. Huch M, Koo BK. Modeling mouse and human development using organoid cultures. Development. 2015;142(18):3113-25.
DOI: 10.1242/dev.118570
PMID: 26395140
23. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586-97.
DOI: 10.1016/j.cell.2016.05.082
PMID: 27315476
24. Dutta D, Heo I, Clevers H. Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends Mol Med. 2017;23(5):393-410.
DOI: 10.1016/j.molmed.2017.02.007
PMID: 28341301
25. Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev. 2009;15(3):353-70.
DOI: 10.1089/ten.teb.2009.0085
PMID: 19496677
26. Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets. 2017;9(6):109-39.
DOI: 10.1080/19382014.2017.1342022
PMID: 28662366
27. Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48(3):e219.
DOI: 10.1038/emm.2016.6
PMID: 26964835
28. Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets. 2015;7(1):e1024405.
DOI: 10.1080/19382014.2015.1024405
PMID: 26030186
29. Stožer A. Pancreas Physiology and Pathophysiology in Tissue Slices. Gastroenterolog. 2017;21(Suppl 3):68-73.
30. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084-94.
DOI: 10.1016/S0140-6736(13)62219-9
PMID: 24315621
31. Stožer A, Hojs R, Dolenšek J. Beta Cell Functional Adaptation and Dysfunction in Insulin Resistance and the Role of Chronic Kidney Disease. Nephron. 2019;143(1):33-7.
DOI: 10.1159/000495665
PMID: 30650405
32. Drong AW, Lindgren CM, McCarthy MI. The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther. 2012;92(6):707-15.
DOI: 10.1038/clpt.2012.149
PMID: 23047653
33. Gupta D, Krueger CB, Lastra G. Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction. Curr Diabetes Rev. 2012;8(2):76-83.
DOI: 10.2174/157339912799424564
PMID: 22229253
34. King A, Bowe J. Animal models for diabetes: understanding the pathogenesis and finding new treatments. Biochem Pharmacol. 2016;99:1-10.
DOI: 10.1016/j.bcp.2015.08.108
PMID: 26432954
35. Harcourt BE, Penfold SA, Forbes JM. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol. 2013;9(2):113-23.
DOI: 10.1038/nrendo.2012.236
PMID: 23296171
36. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22(4):359-70.
DOI: 10.1111/j.1464-5491.2005.01499.x
PMID: 15787657
37. Gosak M, Markovič R, Dolenšek J, Rupnik MS, Marhl M, Stožer A, et al. Network science of biological systems at different scales: a review. Phys Life Rev. 2018;24:118-35.
DOI: 10.1016/j.plrev.2017.11.003
PMID: 29150402
38. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn LJ, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176(4):790-804.e13.
DOI: 10.1016/j.cell.2018.12.003
PMID: 30661759
39. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786-801.
DOI: 10.1038/nrm3904
PMID: 25415508
40. Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA. 1992;89(19):9064-8.
DOI: 10.1073/pnas.89.19.9064
PMID: 1384042
41. Ilieva A, Yuan S, Wang RN, Agapitos D, Hill DJ, Rosenberg L. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J Endocrinol. 1999;161(3):357-64.
DOI: 10.1677/joe.0.1610357
PMID: 10333538
42. Li W, Lee S, Ma M, Kim SM, Guye P, Pancoast JR, et al. Microbead-based biomimetic synthetic neighbors enhance survival and function of rat pancreatic β-cells. Sci Rep. 2013;3(1):2863.
DOI: 10.1038/srep02863
PMID: 24091640
43. Mao GH, Chen GA, Bai HY, Song TR, Wang YX. The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials. 2009;30(9):1706-14.
DOI: 10.1016/j.biomaterials.2008.12.030
PMID: 19135250
44. Nagata N, Gu Y, Hori H, Balamurugan AN, Touma M, Kawakami Y, et al. Evaluation of insulin secretion of isolated rat islets cultured in extracellular matrix. Cell Transplant. 2001;10(4-5):447-51.
DOI: 10.3727/000000001783986549
PMID: 11549070
45. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529(1-2):576-88.
DOI: 10.1016/j.ijpharm.2017.07.043
PMID: 28723409
46. Wex C, Fröhlich M, Brandstädter K, Bruns C, Stoll A. Experimental analysis of the mechanical behavior of the viscoelastic porcine pancreas and preliminary case study on the human pancreas. J Mech Behav Biomed Mater. 2015;41:199-207.
DOI: 10.1016/j.jmbbm.2014.10.013
PMID: 25460416
47. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655-63.
DOI: 10.1002/bit.22361
PMID: 19472329
48. Chang H-I, Wang Y. Cell responses to surface and architecture of tissue engineering scaffolds. London: IntechOpen Limited; 2011.
DOI: 10.5772/21983
49. Tuch BE, Gao SY, Lees JG. Scaffolds for islets and stem cells differentiated into insulin-secreting cells. Front Biosci. 2014;19(1):126-38.
DOI: 10.2741/4199
PMID: 24389176
50. Khorsandi L, Khodadadi A, Nejad-Dehbashi F, Saremy S. Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells. Cell Tissue Res. 2015;361(3):745-53.
DOI: 10.1007/s00441-015-2140-9
PMID: 25795142
51. Aloysious N, Nair PD. Enhanced survival and function of islet-like clusters differentiated from adipose stem cells on a three-dimensional natural polymeric scaffold: an in vitro study. Tissue Eng Part A. 2014;20(9-10):1508-22.
DOI: 10.1089/ten.tea.2012.0615
PMID: 24359126
52. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-85.
DOI: 10.1038/nbt.2958
PMID: 25093879
53. Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S. Whole organ decellularization - a tool for bioscaffold fabrication and organ bioengineering. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6526-9.
DOI: 10.1109/IEMBS.2009.5333145
PMID: 19964173
54. Berger C, Bjørlykke Y, Hahn L, Mühlemann M, Kress S, Walles H, et al. Matrix decoded - A pancreatic extracellular matrix with organ specific cues guiding human iPSC differentiation. Biomaterials. 2020;244:119766.
DOI: 10.1016/j.biomaterials.2020.119766
PMID: 32199284
55. Kim J, Shim IK, Hwang DG, Lee YN, Kim M, Kim H, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B Mater Biol Med. 2019;7(10):1773-81.
DOI: 10.1039/C8TB02787K
PMID: 32254919
56. Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33(31):7756-64.
DOI: 10.1016/j.biomaterials.2012.07.023
PMID: 22841923
57. Lee VK, Dai G. Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Ann Biomed Eng. 2017;45(1):115-31.
DOI: 10.1007/s10439-016-1613-7
PMID: 27066784
58. Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci. 2016;51(1):271-310.
DOI: 10.1007/s10853-015-9382-5
59. Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater. 2015;4(12):1742-62.
DOI: 10.1002/adhm.201500168
PMID: 26097108
60. Milojević M, Gradišnik L, Stergar J, Skelin Klemen M, Stožer A, Vesenjak M, et al. Development of multifunctional 3D printed bioscaffolds from polysaccharides and NiCu nanoparticles and their application. Appl Surf Sci. 2019;488:836-52.
DOI: 10.1016/j.apsusc.2019.05.283
61. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434-41.
DOI: 10.1016/j.tibtech.2008.04.009
PMID: 18585808
62. Bae H, Puranik AS, Gauvin R, Edalat F, Carrillo-Conde B, Peppas NA, et al. Building vascular networks. Sci Transl Med. 2012;4(160).
DOI: 10.1126/scitranslmed.3003688
PMID: 23152325
63. Štumberger G, Vihar B. Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices. Materials (Basel). 2018;11(12):2529.
DOI: 10.3390/ma11122529
PMID: 30545119
64. Ibrahim M, Richardson MK. Beyond organoids: in vitro vasculogenesis and angiogenesis using cells from mammals and zebrafish. Reprod Toxicol. 2017;73:292-311.
DOI: 10.1016/j.reprotox.2017.07.002
PMID: 28697965
65. Sorrell JM, Baber MA, Caplan AI. Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A. 2009;15(7):1751-61.
DOI: 10.1089/ten.tea.2008.0254
PMID: 19196139
66. Davies NH, Schmidt C, Bezuidenhout D, Zilla P. Sustaining neovascularization of a scaffold through staged release of vascular endothelial growth factor-A and platelet-derived growth factor-BB. Tissue Eng Part A. 2012;18(1-2):26-34.
DOI: 10.1089/ten.tea.2011.0192
PMID: 21895488
67. Li X, He J, Zhang W, Jiang N, Li D. Additive manufacturing of biomedical constructs with biomimetic structural organizations. Materials (Basel). 2016;9(11):909.
DOI: 10.3390/ma9110909
PMID: 28774030
68. Maver T, Smrke D, Kurečič M, Gradišnik L, Maver U, Kleinschek KS. Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials. J Sol-Gel Sci Technol. 2018;88(1):1-16.
DOI: 10.1007/s10971-018-4630-1
69. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.
DOI: 10.1126/sciadv.1500758
PMID: 26601312
70. Rocca M, Fragasso A, Liu W, Heinrich MA, Zhang YS. Embedded Multimaterial Extrusion Bioprinting. SLAS Technol. 2018;23(2):154-63.
DOI: 10.1177/2472630317742071
PMID: 29132232
71. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):921-6.
DOI: 10.1126/science.1226340
PMID: 23161993
72. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124-30.
DOI: 10.1002/adma.201305506
PMID: 24550124 ; 2014.
73. Huang Y, Zhang XF, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering. Biotechnol J. 2017;12(8):1600734.
DOI: 10.1002/biot.201600734
PMID: 28675678
74. Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y. Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication. 2010;2(1):014110.
DOI: 10.1088/1758-5082/2/1/014110
PMID: 20811125
75. Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg. 2014;46(5):767-78.
DOI: 10.1093/ejcts/ezu242
PMID: 24970571
76. Yeo M, Lee JS, Chun W, Kim GH. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering. Biomacromolecules. 2016;17(4):1365-75.
DOI: 10.1021/acs.biomac.5b01764
PMID: 26998966
77. Liu W, Zhong Z, Hu N, Zhou Y, Maggio L, Miri AK, et al. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication. 2018;10(2):024102.
DOI: 10.1088/1758-5090/aa9d44
PMID: 29176035
78. Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203-15.
DOI: 10.1016/j.biomaterials.2015.05.031
PMID: 26004235
79. Akkineni AR, Ahlfeld T, Lode A, Gelinsky M. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs. Biofabrication. 2016;8(4):045001.
DOI: 10.1088/1758-5090/8/4/045001
PMID: 27716641
80. Milojević M, Vihar B, Banović L, Miško M, Gradišnik L, Zidarič T, et al. Core/shell Printing Scaffolds For Tissue Engineering Of Tubular Structures. J Vis Exp. 2019(151):e59951.
DOI: 10.3791/59951
PMID: 31609306
81. Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, et al. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv Mater. 2016(28):677,84.
DOI: 10.1002/adma.201503310
PMID: 26606883
82. Kim G, Ahn S, Kim Y, Cho Y, Chun W. Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem. 2011;21(17):6165-72.
DOI: 10.1039/c0jm03452e
83. Luo Y, Lode A, Gelinsky M. Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. Adv Healthc Mater. 2013;2(6):777-83.
DOI: 10.1002/adhm.201200303
PMID: 23184455
84. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. Martínez Ávila Hc, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489-96.
DOI: 10.1021/acs.biomac.5b00188
PMID: 25806996
85. Dolenšek J, Pohorec V, Rupnik MS, Stožer A. Pancreas Physiology. In: Seicean A, ed. Challenges in Pancreatic Pathology. London: IntechOpen Limited; 20017.
DOI: 10.5772/65895
86. Marciniak A, Cohrs CM, Tsata V, Chouinard JA, Selck C, Stertmann J, et al. Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat Protoc. 2014;9(12):2809-22.
DOI: 10.1038/nprot.2014.195
PMID: 25393778
87. Marciniak A, Selck C, Friedrich B, Speier S. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ. PLoS One. 2013;8(11):e78706.
DOI: 10.1371/journal.pone.0078706
PMID: 24223842
88. Speier S. Experimental approaches for high-resolution in vivo imaging of islet of Langerhans biology. Curr Diab Rep. 2011;11(5):420-5.
DOI: 10.1007/s11892-011-0207-x
PMID: 21701794
89. Speier S, Rupnik M. A novel approach to in situ characterization of pancreatic beta-cells. Pflugers Arch. 2003;446(5):553-8.
DOI: 10.1007/s00424-003-1097-9
PMID: 12774232
90. Cohrs CM, Chen C, Jahn SR, Stertmann J, Chmelova H, Weitz J, et al. Vessel Network Architecture of Adult Human Islets Promotes Distinct Cell-Cell Interactions In Situ and Is Altered After Transplantation. Endocrinology. 2017;158(5):1373-85.
DOI: 10.1210/en.2016-1184
PMID: 28324008
91. Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, et al. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia. 2017.
PMID: 28884198
92. Meneghel-Rozzo T, Rozzo A, Poppi L, Rupnik M. In vivo and in vitro development of mouse pancreatic beta-cells in organotypic slices. Cell Tissue Res. 2004;316(3):295-303.
DOI: 10.1007/s00441-004-0886-6
PMID: 15085425
93. Dolenšek J, Stožer A, Skelin Klemen M, Miller EW, Slak Rupnik M. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices. PLoS One. 2013;8(12):e82374.
DOI: 10.1371/journal.pone.0082374
PMID: 24324777
94. Stožer A, Dolenšek J, Rupnik MS. Glucose-stimulated calcium dynamics in islets of Langerhans in acute mouse pancreas tissue slices. PLoS One. 2013;8(1):e54638.
DOI: 10.1371/journal.pone.0054638
PMID: 23358454
95. Dolenšek J, Špelič D, Klemen MS, Žalik B, Gosak M, Rupnik MS, et al. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. Sensors (Basel). 2015;15(11):27393-419.
DOI: 10.3390/s151127393
PMID: 26516866
96. Skelin Klemen M, Dolenšek J, Stožer A, Rupnik M. Measuring Exocytosis in Endocrine Tissue Slices. In: Thorn P, ed. Exocytosis Methods. Humana Press; pp. 127-46.
DOI: 10.1007/978-1-62703-676-4_7
97. Skelin M, Rupnik M. cAMP increases the sensitivity of exocytosis to Ca²+ primarily through protein kinase A in mouse pancreatic beta cells. Cell Calcium. 2011;49(2):89-99.
DOI: 10.1016/j.ceca.2010.12.005
PMID: 21242000
98. Dolenšek J, Skelin M, Rupnik MS. Calcium dependencies of regulated exocytosis in different endocrine cells. Physiol Res. 2011;60:S29-38.
DOI: 10.33549/physiolres.932176
PMID: 21777026
99. Stozer A, Dolensek J, Skelin M, Rupnik M. Cell physiology in tissue slices: studying beta cells in the islets of Langerhans = Celicna fiziologija v tkivnih rezinah: preucevanje celic beta v Langerhansovih otockih. Acta medico-biotechnica. 2013;6(1):20-32.
100. Markovič R, Stožer A, Gosak M, Dolenšek J, Marhl M, Rupnik MS. Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns. Sci Rep. 2015;5(1):7845.
DOI: 10.1038/srep07845
PMID: 25598507
101. Gosak M, Stožer A, Markovič R, Dolenšek J, Perc M, Rupnik MS, et al. Critical and Supercritical Spatiotemporal Calcium Dynamics in Beta Cells. Front Physiol. 2017;8(1106):1106.
DOI: 10.3389/fphys.2017.01106
PMID: 29312008
102. Stožer A, Gosak M, Dolenšek J, Perc M, Marhl M, Rupnik MS, et al. Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLOS Comput Biol. 2013;9(2):e1002923.
DOI: 10.1371/journal.pcbi.1002923
PMID: 23468610
103. Huang YC, Rupnik M, Gaisano HY. Unperturbed islet α-cell function examined in mouse pancreas tissue slices. J Physiol. 2011;589(Pt 2):395-408.
DOI: 10.1113/jphysiol.2010.200345
PMID: 21078586
104. Huang YC, Rupnik MS, Karimian N, Herrera PL, Gilon P, Feng ZP, et al. In situ electrophysiological examination of pancreatic α cells in the streptozotocin-induced diabetes model, revealing the cellular basis of glucagon hypersecretion. Diabetes. 2013;62(2):519-30.
DOI: 10.2337/db11-0786
PMID: 23043159
105. Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. Lab Chip. 2017;17(18):3026-36.
DOI: 10.1039/C7LC00462A
PMID: 28795174
106. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal Chem. 1998;70(23):4974-84.
DOI: 10.1021/ac980656z
PMID: 21644679
107. Takebe T, Zhang B, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell. 2017;21(3):297-300.
DOI: 10.1016/j.stem.2017.08.016
PMID: 28886364
108. Sankar KS, Green BJ, Crocker AR, Verity JE, Altamentova SM, Rocheleau JV. Culturing pancreatic islets in microfluidic flow enhances morphology of the associated endothelial cells. PLoS One. 2011;6(9):e24904.
DOI: 10.1371/journal.pone.0024904
PMID: 21961048
109. Silva PN, Green BJ, Altamentova SM, Rocheleau JV. A microfluidic device designed to induce media flow throughout pancreatic islets while limiting shear-induced damage. Lab Chip. 2013;13(22):4374-84.
DOI: 10.1039/c3lc50680k
PMID: 24056576
110. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760-72.
DOI: 10.1038/nbt.2989
PMID: 25093883
Downloads
Published
Issue
Section
License
The Author transfers to the Publisher (Slovenian Medical Association) all economic copyrights following form Article 22 of the Slovene Copyright and Related Rights Act (ZASP), including the right of reproduction, the right of distribution, the rental right, the right of public performance, the right of public transmission, the right of public communication by means of phonograms and videograms, the right of public presentation, the right of broadcasting, the right of rebroadcasting, the right of secondary broadcasting, the right of communication to the public, the right of transformation, the right of audiovisual adaptation and all other rights of the author according to ZASP.
The aforementioned rights are transferred non-exclusively, for an unlimited number of editions, for the term of the statutory
The Author can make use of his work himself or transfer subjective rights to others only after 3 months from date of first publishing in the journal Zdravniški vestnik/Slovenian Medical Journal.
The Publisher (Slovenian Medical Association) has the right to transfer the rights of acquired parties without explicit consent of the Author.
The Author consents that the Article be published under the Creative Commons BY-NC 4.0 (attribution-non-commercial) or comparable licence.