Liquid biopsy – a diagnostic and therapeutic tool in the treatment of non-small cell lung cancer
DOI:
https://doi.org/10.6016/ZdravVestn.3294Keywords:
lung cancer, liquid biopsy, circulating tumor DNA, PCR, NGSAbstract
Lung cancer is one of the most prevalent cancers and the leading cause of cancer mortality worldwide. The past decade has brought important progress in drug treatments by discovering the driver mutations. The evolution of targeted oncological treatments directed to the biological properties of lung cancer in the individual patient has led to a significant increase in survival. During treatment, new mutations accumulate in the tumour, which prevents the long-term success of the therapy. Liquid biopsy is a method that has established itself in recent years as a less invasive diagnostic procedure that allows monitoring the response to treatment and identifying the mechanisms of resistance. The circulating tumor DNA is the most prevalent biomarker in lung cancer, but research on other biomarkers is also active. In this review article, we present the use of liquid biopsy in the clinical treatment of patients with non-small cell lung cancer. Its use is increasingly recognized in early detection of lung cancer, identifying resistant mutations, potential assessment of disease burden, and longitudinal monitoring.
Downloads
References
1. Jain KK. Personalized medicine. Curr Opin Mol Ther. 2002;4(6):548-58.
PMID: 12596356
2. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947-57.
DOI: 10.1056/NEJMoa0810699
PMID: 19692680
3. Boloker G, Wang C, Zhang J. Updated statistics of lung and bronchus cancer in United States (2018). J Thorac Dis. 2018;10(3):1158-61.
DOI: 10.21037/jtd.2018.03.15
PMID: 29708136
4. Onkološki Inštitut LjubljanaRegister raka Republike Slovenije in drugi registri. Ljubljana: Onkološki inštitut; 2018.
5. Ost DE, Yeung SC, Tanoue LT, Gould MK. Clinical and organizational factors in the initial evaluation of patients with lung cancer: Diagnosis and management of lung cancer. Chest. 2013;143:e121S-e141S.
DOI: 10.1378/chest.12-2352
PMID: 23649435
6. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039-49.
DOI: 10.1200/JCO.2012.45.3753
PMID: 23401433
7. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311(19):1998-2006.
DOI: 10.1001/jama.2014.3741
PMID: 24846037
8. World Health OrganizationIARC monographsx on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Geneva: WHO; 1986.
9. Kern I, Rozman A, Stanič K, Štupnik T, Unk M, Ebert Moltara M, et al. Priporočila za obravnavo bolnikov s pljučnim rakom. Ljubljana: Onkološki inštitut; 2019.
10. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018;20(2):129-59.
DOI: 10.1016/j.jmoldx.2017.11.004
PMID: 29398453
11. Johann DJ, Steliga M, Shin IJ, Yoon D, Arnaoutakis K, Hutchins L, et al. Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp Biol Med (Maywood). 2018;243(3):262-71.
DOI: 10.1177/1535370217750087
PMID: 29405770
12. Jesenko T, Grašič Kuhar C, Čemažar M. Tekočinska biopsija pri raku. Radiol Oncol. 2018;2:26-31.
13. Franovic A, Raymond VM, Erlander MG, Reckamp KL. Urine test for EGFR analysis in patients with non-small cell lung cancer. J Thorac Dis. 2017;9(S13):S1323-31.
DOI: 10.21037/jtd.2017.06.144
PMID: 29184671
14. Ying S, Ke H, Ding Y, Liu Y, Tang X, Yang D, et al. Unique genomic profiles obtained from cerebrospinal fluid cell-free DNA of non-small cell lung cancer patients with leptomeningeal metastases. Cancer Biol Ther. 2019;20(4):562-70.
DOI: 10.1080/15384047.2018.1538614
PMID: 30395779
15. Song Z, Wang W, Li M, Liu J, Zhang Y. Cytological-negative pleural effusion can be an alternative liquid biopsy media for detection of EGFR mutation in NSCLC patients. Lung Cancer. 2019;136:23-9.
DOI: 10.1016/j.lungcan.2019.08.004
PMID: 31421258
16. Gu X, He J, Ji G. Combined use of circulating tumor cells and salivary mRNA to detect non-small-cell lung cancer. Medicine (Baltimore). 2020;99(8):e19097.
DOI: 10.1097/MD.0000000000019097
PMID: 32080083
17. Sequist LV, Neal JW. Personalized, genotype-directed therapy for advanced non-small cell lung cancer, UptoDate. Alphen aan den Rijn: Wolters Kluwer; 2020 [cited 2021 Apr 20]. Available from: https://www.uptodate.com/contents/personalized-genotype-directed-therapy-for-advanced-non-small-cell-lung-cancer.
18. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579-86.
DOI: 10.1200/JCO.2012.45.2011
PMID: 24449238
19. Wang N, Zhang X, Wang F, Zhang M, Sun B, Yin W, et al. The diagnostic accuracy of liquid biopsy in EGFR-mutated NSCLC: A systematic review and meta-analysis of 40 studies. SLAS Technol. 2021;26(1):42-54.
DOI: 10.1177/2472630320939565
PMID: 32659150
20. Saarenheimo J, Eigeliene N, Andersen H, Tiirola M, Jekunen A. The value of liquid biopsies for guiding therapy decisions in non-small cell lung cancer. Front Oncol. 2019;9:129.
DOI: 10.3389/fonc.2019.00129
PMID: 30891428
21. Russano M, Napolitano A, Ribelli G, Iuliani M, Simonetti S, Citarella F, et al. Liquid biopsy and tumor heterogeneity in metastatic solid tumors: the potentiality of blood samples. J Exp Clin Cancer Res. 2020;39(1):95.
DOI: 10.1186/s13046-020-01601-2
PMID: 32460897
22. Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget. 2016;7(6):6984-93.
DOI: 10.18632/oncotarget.6874
PMID: 26755650
23. Rolfo C, Mack PC, Scagliotti GV, Baas P, Barlesi F, Bivona TG, et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): A statement paper from the IASLC. J Thorac Oncol. 2018;13(9):1248-68.
DOI: 10.1016/j.jtho.2018.05.030
PMID: 29885479
24. Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, et al. Liquid biopsy for advanced non-small cell lung cancer: a consensus statement from the International Association for the Study of Lung Cancer (IASLC). J Thorac Oncol. 2021;16(10):1647-62.
DOI: 10.1016/j.jtho.2021.06.017
PMID: 34246791
25. Sozzi G, Conte D, Leon M, Ciricione R, Roz L, Ratcliffe C, et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol. 2003;21(21):3902-8.
DOI: 10.1200/JCO.2003.02.006
PMID: 14507943
26. Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol J. 2018;16:370-8.
DOI: 10.1016/j.csbj.2018.10.002
PMID: 30364656
27. Ashworth TR. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Med J Aust. 1869;14:146147.
28. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013;5(179).
DOI: 10.1126/scitranslmed.3005616
PMID: 23552373
29. Progar V, Petrovič U. Vpliv parametrov sekvenciranja naslednje generacije na zanesljivost rezultatov v metagenomskih študijah. Informativa Medica Slovenica. 2013;18:1-8.
30. Yang SR, Schultheis AM, Yu H, Mandelker D, Ladanyi M, Büttner R. Precision medicine in non-small cell lung cancer: current applications and future directions. Semin Cancer Biol. 2020;S1044-579X(20):30164-4.
DOI: 10.1016/j.semcancer.2020.07.00
PMID: 32730814
31. Fernandez-Cuesta L, Perdomo S, Avogbe PH, Leblay N, Delhomme TM, Gaborieau V, et al. Identification of circulating tumor dna for the early detection of small-cell lung cancer. EBioMedicine. 2016;10:117-23.
DOI: 10.1016/j.ebiom.2016.06.032
PMID: 27377626
32. Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379(18):1754-65.
DOI: 10.1056/NEJMra1706174
PMID: 30380390
33. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: preanalytical considerations. Clin Chim Acta. 2013;424:222-30.
DOI: 10.1016/j.cca.2013.05.022
PMID: 23727028
34. Boettcher S, Ebert BL. Clonal Hematopoiesis of Indeterminate Potential. J Clin Oncol. 2019;37(5):419-22.
DOI: 10.1200/JCO.2018.79.3588
PMID: 30589599
35. Liu J, Chen X, Wang J, Zhou S, Wang CL, Ye MZ, et al. Biological background of the genomic variations of cf-DNA in healthy individuals. Ann Oncol. 2019;30(3):464-70.
DOI: 10.1093/annonc/mdy513
PMID: 30475948
36. Trombetta D, Sparaneo A, Fabrizio FP, Muscarella LA. Liquid biopsy and NSCLC. Lung Cancer Manag. 2016;5(2):91-104.
DOI: 10.2217/lmt-2016-0006
PMID: 30643553
37. Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of circulating tumor cells in breast cancer. Adv Exp Med Biol. 2020;1220:117-34.
DOI: 10.1007/978-3-030-35805-1_8
PMID: 32304083
38. Pantel K, Hille C, Scher HI. Circulating tumor cells in prostate cancer: from discovery to clinical utility. Clin Chem. 2019;65(1):87-99.
DOI: 10.1373/clinchem.2018.287102
PMID: 30602476
39. Sundling KE, Lowe AC. Circulating tumor cells: overview and opportunities in cytology. Adv Anat Pathol. 2019;26(1):56-63.
DOI: 10.1097/PAP.0000000000000217
PMID: 30325755
40. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479-91.
DOI: 10.1158/2159-8290.CD-15-1483
PMID: 26969689
41. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431-7.
DOI: 10.1007/s00109-013-1020-6
PMID: 23519402
42. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18(12):e754-66.
DOI: 10.1016/S1470-2045(17)30861-6
PMID: 29208441
43. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TB, Veeriah S, et al.; TRACERx Consortium. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109-21.
DOI: 10.1056/NEJMoa1616288
PMID: 28445112
44. Szpechcinski A, Rudzinski P, Kupis W, Langfort R, Orlowski T, Chorostowska-Wynimko J. Plasma cell-free DNA levels and integrity in patients with chest radiological findings: NSCLC versus benign lung nodules. Cancer Lett. 2016;374(2):202-7.
DOI: 10.1016/j.canlet.2016.02.002
PMID: 26854716
45. LeBleu VS, Kalluri R. Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer. 2020;6(9):767-74.
DOI: 10.1016/j.trecan.2020.03.007
PMID: 32307267
46. Sohel MM. Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci. 2020;248:117473.
DOI: 10.1016/j.lfs.2020.117473
PMID: 32114007
47. Tang Z, Li D, Hou S, Zhu X. The cancer exosomes: clinical implications, applications and challenges. Int J Cancer. 2020;146(11):2946-59.
DOI: 10.1002/ijc.32762
PMID: 31671207
48. Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One. 2014;9(10):e111597.
DOI: 10.1371/journal.pone.0111597
PMID: 25360587
49. Leroy S, Benzaquen J, Mazzetta A, Marchand-Adam S, Padovani B, Israel-Biet D, et al.; AIR Project Study Group. Circulating tumour cells as a potential screening tool for lung cancer (the AIR study): protocol of a prospective multicentre cohort study in France. BMJ Open. 2017;7(12):e018884.
DOI: 10.1136/bmjopen-2017-018884
PMID: 29282271
50. Marquette CH, Boutros J, Benzaquen J, Ferreira M, Pastre J, Pison C, et al.; AIR project Study Group. Circulating tumour cells as a potential biomarker for lung cancer screening: a prospective cohort study. Lancet Respir Med. 2020;8(7):709-16.
DOI: 10.1016/S2213-2600(20)30081-3
PMID: 32649919
51. Serrano MJ, Garrido-Navas MC, Diaz Mochon JJ, Cristofanilli M, Gil-Bazo I, Pauwels P, et al.; International Society of Liquid Biopsy. Precision Prevention and Cancer Interception: The New Challenges of Liquid Biopsy. Cancer Discov. 2020;10(11):1635-44.
DOI: 10.1158/2159-8290.CD-20-0466
PMID: 33037026
52. Chen X, Gole J, Gore A, He Q, Lu M, Min J, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun. 2020;11(1):3475.
DOI: 10.1038/s41467-020-17316-z
PMID: 32694610
53. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15(9):577-86.
DOI: 10.1038/s41571-018-0058-3
PMID: 29968853
54. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al.; ESMO Guidelines Committee. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv192-237.
DOI: 10.1093/annonc/mdy275
55. Ettinger DS, Wood DE, Aggarwal C, Aisner DL, Akerley W, Bauman JR, et al.; OCN. NCCN Guidelines Insights: non-small cell lung cancer, Version 1.2020. J Natl Compr Canc Netw. 2019;17(12):1464-72.
DOI: 10.6004/jnccn.2019.0059
PMID: 31805526
56. Nosaki K, Satouchi M, Kurata T, Yoshida T, Okamoto I, Katakami N, et al. Re-biopsy status among non-small cell lung cancer patients in Japan: A retrospective study. Lung Cancer. 2016;101:1-8.
DOI: 10.1016/j.lungcan.2016.07.007
PMID: 27794396
57. Coghlin CL, Smith LJ, Bakar S, Stewart KN, Devereux GS, Nicolson MC, et al. Quantitative analysis of tumor in bronchial biopsy specimens. J Thorac Oncol. 2010;5(4):448-52.
DOI: 10.1097/JTO.0b013e3181ca12c4
PMID: 20125040
58. Food and drug administration. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). Silver Spring: FDA; 2021 [cited 2021 Apr 20]. Available from: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431.htm.
59. European Medicines Agency. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). Amsterdam: EMA; 2021 [cited 2021 Apr 20]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Product_Information/human/004124/WC500202022.pdf.
60. Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389-400.
DOI: 10.1038/nm.3388
PMID: 24202392
61. Kwapisz D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med. 2017;5(3):46.
DOI: 10.21037/atm.2017.01.32
PMID: 28251125
62. Pisapia P, Pepe F, Smeraglio R, Russo M, Rocco D, Sgariglia R, et al. Cell free DNA analysis by SiRe® next generation sequencing panel in non small cell lung cancer patients: focus on basal setting. J Thorac Dis. 2017;9(S13):S1383-90.
DOI: 10.21037/jtd.2017.06.97
PMID: 29184677
63. Yang JC, Ahn MJ, Kim DW, Ramalingam SS, Sequist LV, Su WC, et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component. J Clin Oncol. 2017;35(12):1288-96.
DOI: 10.1200/JCO.2016.70.3223
PMID: 28221867
64. Normanno N, Maiello MR, Chicchinelli N, Iannaccone A, Esposito C, De Cecio R, et al. Targeting the EGFR T790M mutation in non-small-cell lung cancer. Expert Opin Ther Targets. 2017;21(2):159-65.
DOI: 10.1080/14728222.2017.1272582
PMID: 28002980
65. Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, et al. Heterogeneity underlies the emergence of egfrt790 wild-type clones following treatment of T790M-Positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 2015;5(7):713-22.
DOI: 10.1158/2159-8290.CD-15-0399
PMID: 25934077
66. Remon J, Menis J, Hasan B, Peric A, De Maio E, Novello S, et al. The APPLE Trial: feasibility and activity of AZD9291 (Osimertinib) treatment on positive plasma T790M in EGFR-mutant NSCLC patients. EORTC 1613. Clin Lung Cancer. 2017;18(5):583-8.
DOI: 10.1016/j.cllc.2017.02.005
PMID: 28341106
67. Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin CC, Soo RA, et al. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non-small-cell lung cancer. J Clin Oncol. 2019;37(16):1370-9.
DOI: 10.1200/JCO.18.02236
PMID: 30892989
68. Mezquita L, Swalduz A, Jovelet C, Ortiz-Cuaran S, Howarth K, Planchard D, et al. Clinical relevance of an amplicon-based liquid biopsy for detecting ALK and ROS1 fusion and resistance mutations in patients with non-small-cell lung cancer. JCO Precis Oncol. 2020;4(4):4.
DOI: 10.1200/PO.19.00281
PMID: 32923908
69. Ortiz-Cuaran S, Mezquita L, Swalduz A, Aldea M, Mazieres J, Leonce C, et al. Circulating tumor DNA genomics reveal potential mechanisms of resistance to BRAF-targeted therapies in patients with BRAF-mutant metastatic non-small cell lung cancer. Clin Cancer Res. 2020;26(23):6242-53.
DOI: 10.1158/1078-0432.CCR-20-1037
PMID: 32859654
70. Mosele F, Remon J, Mateo J, Westphalen CB, Barlesi F, Lolkema MP, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31(11):1491-505.
DOI: 10.1016/j.annonc.2020.07.014
PMID: 32853681
71. Clery E, Pisapia P, Feliciano S, Vigliar E, Marano A, De Luca C, et al. There is still a role for cytology in the ‘liquid biopsy’ era. A lesson from a TKI-treated patient showing adenocarcinoma to squamous cell carcinoma transition during disease progression. J Clin Pathol. 2017;70(9):798-802.
DOI: 10.1136/jclinpath-2017-204370
PMID: 28363898
72. Revelo AE, Martin A, Velasquez R, Kulandaisamy PC, Bustamante J, Keshishyan S, et al. Liquid biopsy for lung cancers: an update on recent developments. Ann Transl Med. 2019;7(15):349.
DOI: 10.21037/atm.2019.03.28
PMID: 31516895
73. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-38.
DOI: 10.1038/nrc.2017.7
PMID: 28233803
74. Song Y, Hu C, Xie Z, Wu L, Zhu Z, Rao C, et al.; Written on behalf of AME Lung Cancer Collaborative Group. Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort. Transl Lung Cancer Res. 2020;9(2):269-79.
DOI: 10.21037/tlcr.2020.03.17
PMID: 32420066
75. Horn L, Whisenant JG, Wakelee H, Reckamp KL, Qiao H, Leal TA, et al. Monitoring therapeutic response and resistance: analysis of circulating tumor DNA in patients with ALK+ lung cancer. J Thorac Oncol. 2019;14(11):1901-11.
DOI: 10.1016/j.jtho.2019.08.003
PMID: 31446141
76. Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget. 2016;7(6):6984-93.
DOI: 10.18632/oncotarget.6874
PMID: 26755650
77. Kern I, Čufer T, Rot M, Mohorčič K, Požek I, Palma JF, et al. Dynamic changes of egfr activating mutations as an early predictor of progression in non–small cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. J Mol Biomark Diagn. 2020;11(3):1-7.
78. Zulato E, Attili I, Pavan A, Nardo G, Del Bianco P, Boscolo Bragadin A, et al. Early assessment of KRAS mutation in cfDNA correlates with risk of progression and death in advanced non-small-cell lung cancer. Br J Cancer. 2020;123(1):81-91.
DOI: 10.1038/s41416-020-0833-7
PMID: 32376889
Downloads
Published
Issue
Section
License
The Author transfers to the Publisher (Slovenian Medical Association) all economic copyrights following form Article 22 of the Slovene Copyright and Related Rights Act (ZASP), including the right of reproduction, the right of distribution, the rental right, the right of public performance, the right of public transmission, the right of public communication by means of phonograms and videograms, the right of public presentation, the right of broadcasting, the right of rebroadcasting, the right of secondary broadcasting, the right of communication to the public, the right of transformation, the right of audiovisual adaptation and all other rights of the author according to ZASP.
The aforementioned rights are transferred non-exclusively, for an unlimited number of editions, for the term of the statutory
The Author can make use of his work himself or transfer subjective rights to others only after 3 months from date of first publishing in the journal Zdravniški vestnik/Slovenian Medical Journal.
The Publisher (Slovenian Medical Association) has the right to transfer the rights of acquired parties without explicit consent of the Author.
The Author consents that the Article be published under the Creative Commons BY-NC 4.0 (attribution-non-commercial) or comparable licence.