Vpliv prehrane na črevesno mikrobioto

Avtorji

  • Maja Šikić Pogačar Medicinska fakulteta, Univerza v Mariboru, Maribor, Slovenija
  • Dušanka Mičetić-Turk Medicinska fakulteta, Univerza v Mariboru, Maribor, Slovenija

DOI:

https://doi.org/10.6016/ZdravVestn.3005

Ključne besede:

prehrana, črevesna mikrobiota, polifenoli, probiotiki, prebiotiki

Povzetek

Črevesna mikrobiota je kompleksna skupnost, sestavljena iz milijarde mikroorganizmov, ki živijo z gostiteljem in se mu vse življenje prilagajajo. V zadnjem času je napredek metod sekvencioniranja DNK visoke zmogljivosti omogočil identificiranje posameznih vrst bakterij v vzorcu blata, metoda masne spektrometrije identifikacijo njihovih presnovkov, oboje pa veliko raziskav na tem področju. Postalo je očitno, da igra črevesna mikrobiota pomembno vlogo pri zdravju ljudi in vpliva na tveganje za razvoj številnih kroničnih bolezni, vključno z debelostjo, vnetno črevesno boleznijo, diabetesom tipa 2, srčno-žilnimi boleznimi in rakom. Raznolik ekosistem v črevesju zajema bakterije, viruse, fage, kvasovke, arheje, glive in protozoje. Odgovorni so za tvorbo bioaktivnih presnovkov, uravnavanje imunskega delovanja, energijsko homeostazo in zaščito pred patogenimi mikroorganizmi. Te funkcije so odvisne od raznolikosti in številčnosti mikrobiote, ki pa je med drugim tudi odraz prehranjevalnih navad in genetike gostitelja. Črevesna mikrobiota tako kaže pomembne razlike med posamezniki. Prehrana in življenjski slog sta pomembna dejavnika pri oblikovanju mikrobiote. Uporaba antibiotikov, različni sanitarni ukrepi, uživanje predelane hrane in različne diete se kažejo tudi v spremembah sestave mikrobiote črevesja. Nekatere dramatične prehranske spremembe lahko povzročijo hitre spremembe v sestavi črevesne mikrobiote, in sicer že v 24 urah, nekatere od teh sprememb pa je težko povrniti v prvotno sestavo. Z moduliranjem sestave črevesne mikrobiote ponuja prehrana orodje za zmanjšanje tveganja za razvoj bolezni, hkrati pa izboljša kakovost življenja in vpliva na podaljšanje življenjske dobe. Namen preglednega članka je predstaviti dosedanje znanje o vplivu prehrane in posameznih sestavin hrane, in sicer ogljikovih hidratov, beljakovin, maščob in polifenolov na sestavo črevesne mikrobiote.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

1. Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216(1):20-40.
DOI: 10.1084/jem.20180448
PMID: 30322864

2. Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716-25.
DOI: 10.1136/gutjnl-2018-316723
PMID: 29934437

3. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1):14.
DOI: 10.3390/microorganisms7010014
PMID: 30634578

4. Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients. 2019;11(4):923.
DOI: 10.3390/nu11040923
PMID: 31022973

5. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.
DOI: 10.1186/s12967-017-1175-y
PMID: 28388917

6. Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, et al. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr. 2019;6:21.
DOI: 10.3389/fnut.2019.00021
PMID: 30931309

7. Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8-16.
DOI: 10.1038/s41564-017-0072-8
PMID: 29255284

8. Zhao J, Zhang X, Liu H, Brown MA, Qiao S. Dietary Protein and Gut Microbiota Composition and Function. Curr Protein Pept Sci. 2019;20(2):145-54.
DOI: 10.2174/1389203719666180514145437
PMID: 29756574

9. Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet⁻Microbe⁻Host Interaction. Microorganisms. 2019;7(1):19.
DOI: 10.3390/microorganisms/7010019
PMID: 30642098

10. Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17(12):742-53.
DOI: 10.1038/s41579-019-0256-8
PMID: 31541197

11. Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54(3):325-41.
DOI: 10.1007/s00394-015-0852-y
PMID: 25672526

12. Takiishi T, Fenero CI, Câmara NO. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208.
DOI: 10.1080/21688370.2017.1373208
PMID: 28956703

13. Henderickx JG, Zwittink RD, van Lingen RA, Knol J, Belzer C. The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Front Cell Infect Microbiol. 2019;9:85.
DOI: 10.3389/fcimb.2019.00085
PMID: 31001489

14. Tauchi H, Yahagi K, Yamauchi T, Hara T, Yamaoka R, Tsukuda N, et al. Gut microbiota development of preterm infants hospitalised in intensive care units. Benef Microbes. 2019;10(6):641-51.
DOI: 10.3920/BM2019.0003
PMID: 31179713

15. Catinean A, Neag MA, Mitre AO, Bocsan CI, Buzoianu AD. Microbiota and Immune-Mediated Skin Diseases-An Overview. Microorganisms. 2019;7(9):E279.
DOI: 10.3390/microorganisms7090279
PMID: 31438634

16. Iizumi T, Battaglia T, Ruiz V, Perez Perez GI. Gut microbiome and antibiotics. Arch Med Res. 2017;48(8):727-34.
DOI: 10.1016/j.arcmed.2017.11.004
PMID: 29221800

17. Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Front Physiol. 2017;8:1047.
DOI: 10.3389/fphys.2017.01047
PMID: 29311977

18. Martin AM, Sun EW, Rogers GB, Keating DJ. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front Physiol. 2019;10:428.
DOI: 10.3389/fphys.2019.00428
PMID: 31057420

19. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56-64.
DOI: 10.1038/nature18846
PMID: 27383980

20. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019;11(7):1613.
DOI: 10.3390/nu11071613
PMID: 31315227

21. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514(7521):181-6.
DOI: 10.1038/nature13793
PMID: 25231862

22. Lang JM, Pan C, Cantor RM, Tang WH, Garcia-Garcia JC, Kurtz I, et al. Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio. 2018;9(6):e01604-18.
DOI: 10.1128/mBio.01604-18
PMID: 30538180

23. Portune KJ, Beaumont M, Davila A-M, Tom D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol. 2016;57 Part B:213-32.
DOI: doi.org/10.1016/j.tifs.2016.08.011

24. Blachier F, Beaumont M, Portune KJ, Steuer N, Lan A, Audebert M, et al. High-protein diets for weight management: interactions with the intestinal microbiota and consequences for gut health. A position paper by the my new gut study group. Clin Nutr. 2019;38(3):1012-22.
DOI: 10.1016/j.clnu.2018.09.016
PMID: 30274898

25. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731-6.
DOI: 10.1073/pnas.0804812105
PMID: 18936492

26. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12(10):661-72.
DOI: 10.1038/nrmicro3344
PMID: 25198138

27. Lecomte V, Kaakoush NO, Maloney CA, Raipuria M, Huinao KD, Mitchell HM, et al. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One. 2015;10(5):e0126931.
DOI: 10.1371/journal.pone.0126931
PMID: 25992554

28. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. 2014;505(7484):559,63.
DOI: 10.1038/nature12820
PMID: 24336217

29. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut. 2019;68(8):1417-29.
DOI: 10.1136/gutjnl-2018-317609
PMID: 30782617

30. Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes. 2013;37(2):216-23.
DOI: 10.1038/ijo.2012.33
PMID: 22410962

31. Drasar BS, Crowther JS, Goddard P, Hawksworth G, Hill MJ, Peach S, et al. The relation between diet and the gut microflora in man. Proc Nutr Soc. 1973;32(2):49-52.
DOI: 10.1079/PNS19730014
PMID: 4791056

32. Urwin HJ, Miles EA, Noakes PS, Kremmyda LS, Vlachava M, Diaper ND, et al. Effect of salmon consumption during pregnancy on maternal and infant faecal microbiota, secretory IgA and calprotectin. Br J Nutr. 2014;111(5):773-84.
DOI: 10.1017/S0007114513003097
PMID: 24128654

33. Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017;8(2):130-42.
DOI: 10.1080/19490976.2016.1270811
PMID: 28059614

34. Huang EY, Leone VA, Devkota S, Wang Y, Brady MJ, Chang EB. Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. JPEN J Parenter Enteral Nutr. 2013;37(6):746-54.
DOI: 10.1177/0148607113486931
PMID: 23639897

35. Prieto I, Hidalgo M, Segarra AB, Martínez-Rodríguez AM, Cobo A, Ramírez M, et al. Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS One. 2018;13(1):e0190368.
DOI: 10.1371/journal.pone.0190368
PMID: 29293629

36. Costantini L, Molinari R, Farinon B, Merendino N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int J Mol Sci. 2017;18(12):2645.
DOI: 10.3390/ijms18122645
PMID: 29215589

37. Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients. 2019;11(6):1355.
DOI: 10.3390/nu11061355
PMID: 31208133

38. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016;7(3):216-34.
DOI: 10.1080/19490976.2016.1158395
PMID: 26963713

39. Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018;200(2):203-17.
DOI: 10.1007/s00203-017-1459-x
PMID: 29188341

40. Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol. 2006;157(9):876-84.
DOI: 10.1016/j.resmic.2006.07.004
PMID: 16962743

41. Cuervo A, Valdés L, Salazar N, de los Reyes-Gavilán CG, Ruas-Madiedo P, Gueimonde M, et al. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria. J Agric Food Chem. 2014;62(23):5330-6.
DOI: 10.1021/jf501546a
PMID: 24877654

42. Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93(1):62-72.
DOI: 10.3945/ajcn.110.000075
PMID: 21068351

43. Cueva C, Sánchez-Patán F, Monagas M, Walton GE, Gibson GR, Martín-Álvarez PJ, et al. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol. 2013;83(3):792-805.
DOI: 10.1111/1574-6941.12037
PMID: 23121387

44. Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson GR, Quintanilla-López JE, et al. In vitro fermentation of a red wine extract by human gut microbiota: changes in microbial groups and formation of phenolic metabolites. J Agric Food Chem. 2012;60(9):2136-47.
DOI: 10.1021/jf2040115
PMID: 22313337

45. Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, Gomez-Zumaquero JM, Clemente-Postigo M, Estruch R, et al. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am J Clin Nutr. 2012;95(6):1323-34.
DOI: 10.3945/ajcn.111.027847
PMID: 22552027

46. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-8.
DOI: 10.1126/science.1208344
PMID: 21885731

47. Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53-60.
DOI: 10.1038/ejcn.2011.141
PMID: 21811294

48. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res. 2013;69(1):52-60.
DOI: 10.1016/j.phrs.2012.10.020
PMID: 23147033

49. Zaman SA, Sarbini SR. The potential of resistant starch as a prebiotic. Crit Rev Biotechnol. 2016;36:578-84.
DOI: 10.3109/07388551.2014.993590
PMID: 25582732

50. Respondek F, Gerard P, Bossis M, Boschat L, Bruneau A, Rabot S, et al. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLoS One. 2013;8(8):e71026.
DOI: 10.1371/journal.pone.0071026
PMID: 23951074

51. Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87(2):357-67.
DOI: 10.1111/1574-6941.12228
PMID: 24117923

52. Markowiak P, Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9(9):9.
DOI: 10.3390/nu9091021
PMID: 28914794

53. Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, De Noni I, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787-96.
DOI: 10.3945/jn.114.197723
PMID: 25332478

54. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52.
DOI: 10.1186/s13073-016-0300-5
PMID: 27159972

55. Laursen MF, Laursen RP, Larnkjær A, Michaelsen KF, Bahl MI, Licht TR. Administration of two probiotic strains during early childhood does not affect the endogenous gut microbiota composition despite probiotic proliferation. BMC Microbiol. 2017;17(1):175.
DOI: 10.1186/s12866-017-1090-7
PMID: 28818050

56. Rajkumar H, Mahmood N, Kumar M, Varikuti SR, Challa HR, Myakala SP. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial. Mediators Inflamm. 2014;2014:348959.
DOI: 10.1155/2014/348959
PMID: 24795503

57. Yang YJ, Sheu BS. Probiotics-containing yogurts suppress Helicobacter pylori load and modify immune response and intestinal microbiota in the Helicobacter pylori-infected children. Helicobacter. 2012;17(4):297-304.
DOI: 10.1111/j.1523-5378.2012.00941.x
PMID: 22759330

Objavljeno

2021-04-30

Številka

Rubrika

Strokovni članek

Kako citirati

1.
Vpliv prehrane na črevesno mikrobioto. ZdravVestn [Internet]. 2021 Apr. 30 [cited 2024 Oct. 8];90(3-4):178-92. Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/3005