Nanos zdravilnih učinkovin na biokompatibilne podlage z metodo 2D tiskanja za izdelavo farmacevtskih oblik, prilagojenih bolnikom

Avtorji

  • Barbara Sterle Zorec Katedra za farmacevtsko tehnologijo, Fakulteta za farmacijo, Univerza v Ljubljani, Ljubljana, Slovenija
  • Rok Dreu Katedra za farmacevtsko tehnologijo, Fakulteta za farmacijo, Univerza v Ljubljani, Ljubljana, Slovenija

DOI:

https://doi.org/10.6016/ZdravVestn.3347

Ključne besede:

personalizirano zdravljenje, brizgalni tiskalnik, črnila za tiskanje, disperzije nanodelcev, biokompatibilne podlage za tiskanje

Povzetek

Pomen personaliziranega načina zdravljenja se iz leta v leto povečuje, saj je zavedanje, da ljudje nismo popolnoma enaki in da vsak organizem potrebuje sebi lastno terapijo, vedno večje. Poznavanje genetike in njenega vpliva na izvor in potek nekaterih bolezni pomen personaliziranega zdravljenja še povečuje. Zato se trenutne raziskave v farmacevtski stroki vedno bolj nagibajo k razvoju in optimizaciji zdravil, ki bi omogočala tak način zdravljenja. V ta namen je dandanes vedno več raziskovalcev, usmerjenih v razvoj nanosa zdravilnih učinkovin (ZU) na podlage z metodo 2D tiskanja, ki zaradi svoje priročnosti, možnosti široke uporabe in enostavnega prilagajanja odmerkov iz dneva v dan pridobiva na vrednosti. Princip tiskanja poteka na enak način kot tiskanje besedilnih dokumentov, le da črnila zamenjamo z disperzijo ZU, medtem ko namesto listov papirja uporabimo različne biološko kompatibilne podlage, ki skupaj z natisnjeno zdravilno učinkovino služijo kot per oralna farmacevtska oblika. Pri tiskanju ZU lahko uporabimo različne vrste tiskalnikov, pri čemer pa vsak izmed njih za uspešno tiskanje zahteva izpolnitev določenih specifikacijskih zahtev. Prednosti, ki jih nanos ZU z metodo 2D tiskanja prinaša, so poleg hitre izdelave personalizirane farmacevtske oblike (FO) z natančnim odmerjanjem tudi hkratno tiskanje in s tem združevanje več ZU hkrati v eno samo FO. Kljub vsemu omenjenemu pa na tem področju še vedno obstaja veliko izzivov, s katerimi se bo potrebno spopasti, preden bo tak način izdelave in odmerjanja zdravil dosegel trg in bil na voljo pacientom.

Prenosi

Podatki o prenosih še niso na voljo.

Biografije avtorja

  • Barbara Sterle Zorec, Katedra za farmacevtsko tehnologijo, Fakulteta za farmacijo, Univerza v Ljubljani, Ljubljana, Slovenija

    asist. dr. Barbara Sterle Zorec

  • Rok Dreu, Katedra za farmacevtsko tehnologijo, Fakulteta za farmacijo, Univerza v Ljubljani, Ljubljana, Slovenija

    izr. prof. dr. Rok Dreu

Literatura

1. Florence AT, Lee VH. Personalised medicines: more tailored drugs, more tailored delivery. Int J Pharm. 2011;415(1-2):29-33.
DOI: 10.1016/j.ijpharm.2011.04.047
PMID: 21565262

2. Breitkreutz J, Boos J. Paediatric and geriatric drug delivery. Expert Opinion on Drug Delivery. 2007;4(1):37-45.
DOI: 10.1517/17425247.4.1.37
PMID: 17184161

3. Mini E, Nobili S. Pharmacogenetics: implementing personalized medicine. Clin Cases Miner Bone Metab. 2009;6(1):17-24.
PMID: 22461093

4. Jones DR, Miller GP. Assays and applications in warfarin metabolism: what we know, how we know it and what we need to know. Expert Opin Drug Metab Toxicol. 2011;7(7):857-74.
DOI: 10.1517/17425255.2011.576247
PMID: 21480820

5. Tarkkala H, Helén I, Snell K. From health to wealth: the future of personalized medicine in the making. Futures. 2019;109:142-52.
DOI: 10.1016/j.futures.2018.06.004

6. Teng J, Song CK, Williams RL, Polli JE. Lack of medication dose uniformity in commonly split tablets. J Am Pharm Assoc. 2002;42(2):195-9.
DOI: 10.1331/108658002763508489
PMID: 11926662

7. van Santen E, Barends DM, Frijlink HW. Breaking of scored tablets: a review. Eur J Pharm Biopharm. 2002;53(2):139-45.
DOI: 10.1016/S0939-6411(01)00228-4
PMID: 11879995

8. Thomson SA, Tuleu C, Wong IC, Keady S, Pitt KG, Sutcliffe AG. Minitablets: new modality to deliver medicines to preschool-aged children. Pediatrics. 2009;123(2):e235-8.
DOI: 10.1542/peds.2008-2059
PMID: 19171575

9. Agrahari V, Agrahari V, Mitra AK. Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther Deliv. 2016;7(4):257-78.
DOI: 10.4155/tde-2015-0012
PMID: 27010987

10. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10-29.
DOI: 10.1002/btm2.10003
PMID: 29313004

11. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43-8.
DOI: 10.1177/0192623307310946
PMID: 18337220

12. Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine. 2014;9:1005-23.
PMID: 24600222

13. Saldanha PL, Lesnyak V, Manna L. Large scale syntheses of colloidal nanomaterials. Nano Today. 2017;12:46-63.
DOI: 10.1016/j.nantod.2016.12.001

14. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D Printed Dosage Forms: opportunities and Challenges. Pharm Res. 2016;33(8):1817-32.
DOI: 10.1007/s11095-016-1933-1
PMID: 27194002

15. Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products - the FDA perspective. 3D Print Med. 2016;2:1.
DOI: 10.1186/s41205-016-0005-9
PMID: 29974058

16. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179-85.
DOI: 10.1016/j.jconrel.2011.07.033
PMID: 21827800

17. Kolakovic R, Viitala T, Ihalainen P, Genina N, Peltonen J, Sandler N. Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv. 2013;10(12):1711-23.
DOI: 10.1517/17425247.2013.859134
PMID: 24256326

18. Alomari M, Vuddanda PR, Trenfield SJ, Dodoo CC, Velaga S, Basit AW, et al. Printing T3 and T4 oral drug combinations as a novel strategy for hypothyroidism. Int J Pharm. 2018;549(1-2):363-9.
DOI: 10.1016/j.ijpharm.2018.07.062
PMID: 30063938

19. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93-100.
DOI: 10.1016/j.ijpharm.2011.08.033
PMID: 21889582

20. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568-77.
DOI: 10.1016/j.ijpharm.2014.12.006
PMID: 25498157

21. Lind J, Kälvemark Sporrong S, Kaae S, Rantanen J, Genina N. Social aspects in additive manufacturing of pharmaceutical products. Expert Opin Drug Deliv. 2017;14(8):927-36.
DOI: 10.1080/17425247.2017.1266336
PMID: 27892721

22. Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir. 2009;25(5):2629-35.
DOI: 10.1021/la900059m
PMID: 19437746

23. Day SP, Shufflebottom L. Evidential value from ink-jet printers. Z Zagadnien Nauk Sadowych. 2001;46:356-74.

24. Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019-31.
DOI: 10.3109/03639045.2015.1120743
PMID: 26625986

25. Calvert P. Inkjet Printing for Materials and Devices. Chem Mater. 2001;13(10):3299-305.
DOI: 10.1021/cm0101632

26. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics - A review of research and manufacturing. Int J Pharm. 2015;494(2):554-67.
DOI: 10.1016/j.ijpharm.2015.03.017
PMID: 25772419

27. Arshad MS, Shahzad A, Abbas N, AlAsiri A, Hussain A, Kucuk I, et al. Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approach. Pharm Dev Technol. 2020;25(2):197-205.
DOI: 10.1080/10837450.2019.1684520
PMID: 31638453

28. Buanz AB, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: effect on mechanical properties and physical stability. Int J Pharm. 2015;494(2):611-8.
DOI: 10.1016/j.ijpharm.2014.12.032
PMID: 25526674

29. Buanz AB, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386-92.
DOI: 10.1007/s11095-011-0450-5
PMID: 21544688

30. Edinger M, Bar-Shalom D, Sandler N, Rantanen J, Genina N. QR encoded smart oral dosage forms by inkjet printing. Int J Pharm. 2018;536(1):138-45.
DOI: 10.1016/j.ijpharm.2017.11.052
PMID: 29183858

31. Genina N, Fors D, Vakili H, Ihalainen P, Pohjala L, Ehlers H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47(3):615-23.
DOI: 10.1016/j.ejps.2012.07.020
PMID: 22902482

32. Meléndez PA, Kane KM, Ashvar CS, Albrecht M, Smith PA. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97(7):2619-36.
DOI: 10.1002/jps.21189
PMID: 17876767

33. Öblom H, Cornett C, Bøtker J, Frokjaer S, Hansen H, Rades T, et al. Data-enriched edible pharmaceuticals (DEEP) of medical cannabis by inkjet printing. Int J Pharm. 2020;589:119866.
DOI: 10.1016/j.ijpharm.2020.119866
PMID: 32919002

34. Thabet Y, Lunter D, Breitkreutz J. Continuous inkjet printing of enalapril maleate onto orodispersible film formulations. Int J Pharm. 2018;546(1-2):180-7.
DOI: 10.1016/j.ijpharm.2018.04.064
PMID: 29753906

35. Vuddanda PR, Alomari M, Dodoo CC, Trenfield SJ, Velaga S, Basit AW, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80-7.
DOI: 10.1016/j.ejps.2018.02.002
PMID: 29414676

36. Zakharyuta A, Sieger P, Braun C, Grube A. Inkjet printing platform for fabrication of uniform, excipient-free drug particles for pulmonary delivery in a preclinical setting. J Drug Deliv Sci Technol. 2019;54:101226.
DOI: 10.1016/j.jddst.2019.101226

37. Scoutaris N, Chai F, Maurel B, Sobocinski J, Zhao M, Moffat JG, et al. Development and Biological Evaluation of Inkjet Printed Drug Coatings on Intravascular Stent. Mol Pharm. 2016;13(1):125-33.
DOI: 10.1021/acs.molpharmaceut.5b00570
PMID: 26592866

38. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ. Inkjet printing for pharmaceutical applications. Mater Today. 2014;17(5):247-52.
DOI: 10.1016/j.mattod.2014.04.027

39. Choi M, Hwang J, Choi J, Hong J. Multicomponent High-throughput Drug Screening via Inkjet Printing to Verify the Effect of Immunosuppressive Drugs on Immune T Lymphocytes. Sci Rep. 2017;7(1):6318.
DOI: 10.1038/s41598-017-06690-2
PMID: 28740226

40. U.S. Food & Drug Administration. Q3C — Tables and List Guidance for Industry. Silver spring: U.S. Department of Health and Human Services; 2017 [cited 2021 Sep 2]. Available from: https://www.fda.gov/media/71737/download.

41. Dong H, Carr WW, Morris JF. Visualization of drop-on-demand inkjet: drop formation and deposition. Rev Sci Instrum. 2006;77(8):085101.
DOI: 10.1063/1.2234853

42. Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453(2):488-97.
DOI: 10.1016/j.ijpharm.2013.06.003
PMID: 23769992

43. Xu Q, Basaran O. Computational analysis of drop-on-demand drop formation. Physics of Fluids. Phys Fluids. 2007;19:102111.

44. Huang Q, Shen W, Song W. Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates. Appl Surf Sci. 2012;258(19):7384-8.
DOI: 10.1016/j.apsusc.2012.04.037

45. Raijada D, Genina N, Fors D, Wisaeus E, Peltonen J, Rantanen J, et al. A step toward development of printable dosage forms for poorly soluble drugs. J Pharm Sci. 2013;102(10):3694-704.
DOI: 10.1002/jps.23678
PMID: 23904182

46. Sun J, Wei X, Huang B. Influence of the viscosity of edible ink to piezoelectric ink-jet printing drop state. Appl Mech Mater. 2012;200:676-80.
DOI: 10.4028/www.scientific.net/AMM.200.676

47. Wickström H, Palo M, Rijckaert K, Kolakovic R, Nyman JO, Määttänen A, et al. Improvement of dissolution rate of indomethacin by inkjet printing. Eur J Pharm Sci. 2015;75:91-100.
DOI: 10.1016/j.ejps.2015.03.009
PMID: 25817804

48. Sandler N, Määttänen A, Ihalainen P, Kronberg L, Meierjohann A, Viitala T, et al. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. J Pharm Sci. 2011;100(8):3386-95.
DOI: 10.1002/jps.22526
PMID: 21360709

49. López-Iglesias C, Casielles AM, Altay A, Bettini R, Alvarez-Lorenzo C, García-González CA. From the printer to the lungs: inkjet-printed aerogel particles for pulmonary delivery. Chem Eng J. 2019;357:559-66.
DOI: 10.1016/j.cej.2018.09.159

50. Krainer S, Smit C, Hirn U. The effect of viscosity and surface tension on inkjet printed picoliter dots. RSC Advances. 2019;9(54):31708-19.
DOI: 10.1039/C9RA04993B
PMID: 35527935

51. Derby B. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu Rev Mater Res. 2010;40(1):395-414.
DOI: 10.1146/annurev-matsci-070909-104502

52. Derby B, Reis N. Inkjet Printing of Highly Loaded Particulate Suspensions. MRS Bulletin. 2003;28:815-8.
DOI: 10.1557/mrs2003.230

53. Tai J, Gan HY, Liang YN, Lok BK. Control of Droplet Formation in Inkjet Printing Using Ohnesorge Number Category: Materials and Processes. In: 10th Electronics Packaging Technology Conference. Singapore. 2008; Ljubljana: Združenje za razvoj forenzične toksikologije in drugih forenzičnih ved - Fortox; 2010.

54. Soleimani-Gorgani A. 14 - Inkjet Printing. In: Izdebska J, Thomas S, eds. Printing on Polymers. Norwich: William Andrew Publishing; 2016.

55. Izdebska J. 1 - Printing on Polymers: Theory and Practice. In: Izdebska J, Thomas S, eds. Printing on Polymers. Norwich: William Andrew Publishing; 2016. pp. 1-20.
DOI: 10.1016/B978-0-323-37468-2.00001-4

56. Wheeler JS, Yeates SG. Polymers in Inkjet Printing. Fundamentals of Inkjet Printing. John Wiley & Sons, Ltd; 2016. pp. 117-40.

57. Lee BK, Yun YH, Choi JS, Choi YC, Kim JD, Cho YW. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. Int J Pharm. 2012;427(2):305-10.
DOI: 10.1016/j.ijpharm.2012.02.011
PMID: 22366486

58. Goodall S, Chew N, Chan K, Auriac D, Waters MJ. Aerosolization of protein solutions using thermal inkjet technology. J Aerosol Med. 2002;15(3):351-7.
DOI: 10.1089/089426802760292717
PMID: 12396425

59. Mueannoom W, Srisongphan A, Taylor KM, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80(1):149-55.
DOI: 10.1016/j.ejpb.2011.09.016
PMID: 22001519

60. Sharma G, Mueannoom W, Buanz AB, Taylor KM, Gaisford S. In vitro characterisation of terbutaline sulphate particles prepared by thermal ink-jet spray freeze drying. Int J Pharm. 2013;447(1-2):165-70.
DOI: 10.1016/j.ijpharm.2013.02.045
PMID: 23454848

61. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3):1075-83.
DOI: 10.1016/j.ejpb.2013.03.017
PMID: 23563101

62. Montenegro-Nicolini M, Reyes PE, Jara MO, Vuddanda PR, Neira-Carrillo A, Butto N, et al. The Effect of Inkjet Printing over Polymeric Films as Potential Buccal Biologics Delivery Systems. AAPS PharmSciTech. 2018;19(8):3376-87.
DOI: 10.1208/s12249-018-1105-1
PMID: 29934803

63. Montenegro-Nicolini M, Miranda V, Morales JO. Inkjet Printing of Proteins: an Experimental Approach. AAPS J. 2017;19(1):234-43.
DOI: 10.1208/s12248-016-9997-8
PMID: 27739009

64. Wickström H, Nyman JO, Indola M, Sundelin H, Kronberg L, Preis M, et al. Colorimetry as Quality Control Tool for Individual Inkjet-Printed Pediatric Formulations. AAPS PharmSciTech. 2017;18(2):293-302.
DOI: 10.1208/s12249-016-0620-1
PMID: 27738876

65. Cheow WS, Kiew TY, Hadinoto K. Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm. 2015;96:314-21.
DOI: 10.1016/j.ejpb.2015.08.012
PMID: 26325060

66. Palo M, Kolakovic R, Laaksonen T, Määttänen A, Genina N, Salonen J, et al. Fabrication of drug-loaded edible carrier substrates from nanosuspensions by flexographic printing. Int J Pharm. 2015;494(2):603-10.
DOI: 10.1016/j.ijpharm.2015.01.027
PMID: 25601198

67. Ko HY, Park J, Shin H, Moon J. Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet. Chem Mater. 2004;16(22):4212-5.
DOI: 10.1021/cm035256t

68. Planchette C, Pichler H, Wimmer-Teubenbacher M, Gruber M, Gruber-Woelfler H, Mohr S, et al. Printing medicines as orodispersible dosage forms: effect of substrate on the printed micro-structure. Int J Pharm. 2016;509(1-2):518-27.
DOI: 10.1016/j.ijpharm.2015.10.054
PMID: 26541301

69. Varan C, Wickström H, Sandler N, Aktaş Y, Bilensoy E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int J Pharm. 2017;531(2):701-13.
DOI: 10.1016/j.ijpharm.2017.04.036
PMID: 28432016

70. Magdassi S. Ink Requirements and Formulations Guidelines. The Chemistry of Inkjet Inks. Singapur: World Scientific; 2009. pp. 19-41.

71. Florence AT, Attwood D. Physicochemical Principles of Pharmacy. 5th Revised ed. London: Pharmaceutical Press; 2011.

72. Alexander KS, Haribhakti RP, Parker GA. Stability of acetazolamide in suspension compounded from tablets. 1991;48(6):1241-4.
PMID: 1858804

73. Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B. 2018;8(5):733-55.
DOI: 10.1016/j.apsb.2018.07.011
PMID: 30245962

74. Bock N, Dargaville TR, Woodruff MA. Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci. 2012;37(11):1510-51.
DOI: 10.1016/j.progpolymsci.2012.03.002

75. Ziaee A, Albadarin AB, Padrela L, Femmer T, O’Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300-18.
DOI: 10.1016/j.ejps.2018.10.026
PMID: 30428336

76. Kiefer O, Breitkreutz J. Comparative investigations on key factors and print head designs for pharmaceutical inkjet printing. Int J Pharm. 2020;586:119561.
DOI: 10.1016/j.ijpharm.2020.119561
PMID: 32585176

77. Ivanova TV, Baier G, Landfester K, Musin E, Al-Bataineh SA, Cameron DC, et al. Attachment of Poly(l-lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing. Macromol Biosci. 2015;15(9):1274-82.
DOI: 10.1002/mabi.201500067
PMID: 26013285

78. Essel JT, Ihnen AC, Carter JD. Production of Naproxen Nanoparticle Colloidal Suspensions for Inkjet Printing Applications. Ind Eng Chem Res. 2014;53(7):2726-31.
DOI: 10.1021/ie4038517

79. Chou WH, Galaz A, Jara MO, Gamboa A, Morales JO. Drug-Loaded Lipid-Core Micelles in Mucoadhesive Films as a Novel Dosage Form for Buccal Administration of Poorly Water-Soluble and Biological Drugs. Pharmaceutics. 2020;12(12):1168.
DOI: 10.3390/pharmaceutics12121168
PMID: 33266132

80. Akagi T, Fujiwara T, Akashi M. Inkjet printing of layer-by-layer assembled poly(lactide) stereocomplex with encapsulated proteins. Langmuir. 2014;30(6):1669-76.
DOI: 10.1021/la404162h
PMID: 24460124

Prenosi

Objavljeno

2023-06-30

Številka

Rubrika

Pregledni znanstveni članek

Kako citirati

1.
Nanos zdravilnih učinkovin na biokompatibilne podlage z metodo 2D tiskanja za izdelavo farmacevtskih oblik, prilagojenih bolnikom. ZdravVestn [Internet]. 2023 Jun. 30 [cited 2024 Oct. 7];92(5-6):221-32. Available from: https://vestnik.szd.si/index.php/ZdravVest/article/view/3347